而经典的基于模型的最优化控制过程则可以利用初始控制序列对世界进行仿真,调整控制序列利用梯度下降法对目标进行最优化,再进行时序反向传播。 Yann LeCun 介绍了人工智能系统的架构包括感知器、代理、目标、环境,并用一个公式概括人工智能系统,即:预测+计划=推理。最终得出结论:我们需要基于模型的强化学习。 接下来的《对话中国人工智能科技新锐》主题圆桌论坛中,国内八位人工智能领域科学家、学者从 AI 技术落地方向、应用案例、未来发展走势及业内的竞争等角度向 Yann LeCun 教授连番发问。Yann LeCun 在讨论中表示,人工智能技术正在逐步走向通用的道路,这项技术的出现对某些领域有所帮助进而引发变革,但是在某些领域并未引起波澜。面对巨头公司在竞争中占据天然优势的情况下,AI 创业公司如何找到自身定位这一问题,现场嘉宾的一致观点是,找到一个人工智能技术能够解决的问题,并专注于这个垂直领域。只有做出产品,才能掌握相关数据,之后才能构建数据自我驱动的技术算法,进而形成一个良性循环。 除此之外,Yann LeCun 还就嘉宾对 Facebook 人工智能领域的相关问题一一作答。这次交流活动加深了领域内顶级科学家之间的沟通交流,同时促进了参与者对于前沿技术及行业动向的理解。 (责任编辑:本港台直播) |