2017-07-28 18:41 来源:微软亚洲研究院 微软 原标题:ACL 2017论文研讨会:聚焦自然语言处理领域的新技术 就在上周,微软亚洲研究院举办了“ACL 2017论文研讨会”,旨在促进自然语言处理相关研究者之间的交流,探讨自然语言处理领域的新技术。微软亚洲研究院已被ACL2017大会录用论文的作者在研讨会上分别就各自的论文内容进行了分享。微软亚洲研究院副院长、ACL候任主席周明及约40位相关领域的微软员工和实习生参加了此次活动,就分享论文的问题、算法、实验等方面进行了深入的交流、讨论。 ACL大会(Annual Meeting of the Association for ComputationalLinguistics)是自然语言处理领域的顶级国际会议,被中国计算机学会推荐国际学术会议列表认定为A类国际会议,会议内容涵盖语言分析、机器翻译、信息抽取、自动问答等众多研究领域。长期以来,微软研究院在ACL长文论文的发表总数位居世界第一。 今年的第 55 届ACL大会将于本周末(7月30 日至8月4 日)在加拿大温哥华举行。本届会议共收到1419篇投稿(包括829篇长文和590篇短文),录用长文195篇、短文149篇,长文录用率为23.5%。其中,微软亚洲研究院共有6篇长文,及一篇题为 “SuperAgent: A Customer Service Chatbot for E-commerce Websites” 的demo文章发表。 较高的投稿量反映了自然语言处理领域在人工智能浪潮下的火热。据统计,在被录用的长文论文中,有79篇论文的第一作者为华人,约占被录用长文总数的40%,充分表明了华人的自然语言处理研究走在了世界的前沿,并在不断地向前进步。 在ACL 2017大会即将拉开序幕的前夕,我们先提前为各位小伙伴们热热身,向大家介绍一下此次“ACL2017论文研讨会”所分享论文的亮点。更多详细内容,赶紧戳文中下载链接学起来! 论文 题目 Chunk-based Decoder for Neural Machine Translation作者 Shonosuke Ishiwatari, Jingtao Yao, Shujie Liu, Mu Li, Ming Zhou, Naoki Yoshinaga, Masaru Kitsuregawa, Weijia Jia 汇报人 刘树杰 论文 摘要 在机器翻译中使用组块信息能够更容易的对组块内的词语和组块与组块之间的关系进行建模,因此在统计机器翻译中得到了广泛的使用。该论文的科研人员将组块的信息应用到神经机器翻译中,从而更容易的解决了远距离的依赖问题。他们提出的基于组块的神经机器翻译模型,包含了一个组块级别的解码器和词级别的解码器。组块级别的解码器负责对全局(组块间)的依赖进行建模,而词级别的解码器则对局部(组块内)的依赖进行建模。在英日翻译任务(WAT’16)上的实验显示,j2直播,基于组块的神经机器翻译解码算法能够显著的提高翻译性能。汇报人:刘树杰 论文 题目 Sequence-to-Dependency Neural Machine Translation作者 Shuangzhi Wu, Dongdong Zhang, Nan Yang, Mu Li,Ming Zhou 汇报人 吴双志 论文 摘要 现有的神经网络机器翻译系统大多以序列的形式生成目标语言,忽略了目标语言的句法知识。通常来说,句法知识对句子的构成有重要的指导作用。受目标语言句法知识在短语翻译模型中成功应用的启发,本文提出了一种序列到依存的神经网络机器翻译模型。该模型能够在翻译源语言的同时生成目标语言的依存句法结构,进一步利用已有的句法结构指导后续翻译的生成,从而做到翻译的同时兼顾语法结构。实验表明本文提出的方法的性能在中英翻译和日英翻译任务上都高于传统神经网络机器翻译。汇报人:吴双志 论文 (责任编辑:本港台直播) |