实际上,大多数人工智能的创业都属于第二类,也就是「非关键性应用」。这类项目不追求99%后面的很多个9,而且很多都有更简单实用的解决方案,或者有「人机混合」的方案。总之就是不追求高大上,简单、实用、性价比高更重要,这样的项目通常能够更快落地。这样的项目有以下几个特征: 不追求很多个「9」。例如基于人脸扫描的门禁或者迎宾机器人系统,99%和98%没有本质的区别,实在不行还有前台。 更简单实用的解决方案。例如封闭路段(例如工业园区、机场码头)的自动驾驶,激光雷达又贵又复杂,我直接用磁条导航,而且算法上追求简单,让速不让路,只要前面有人,车就停下来。因为是封闭路段,所以场景被极大简化了。 人机混合模式。面向企业的人工智能很多都能通过人机混合模式降低技术难度,可以更快地面向市场提供服务。拿外卖机器人举个例子,你的算法好,送达成功率有99%,我是98%。100次里面不成功的那两次,我可以用人通过后台去操控机器人,慢慢提高这个比例就好了。即使这样,我还是能极大地降低人力,所以价值还是非常大的。 在「非关键性应用」领域创业,算法固然重要,你送外卖不能总送不到,偶尔出现问题可以容忍(「关键性应用」则不能容忍)。除此以外,能落地就变得非常重要了。如何落地?那就要比拼综合实力了。包括: a.对行业的理解,要深刻洞悉行业痛点在哪儿; b.产品化和工程化,有没有好的产品和工程师团队?光在实验室里搞是没用的; c.做出来的产品还得便宜; d.批量生产的话,你的供应链能力怎么样? e.产品出来了,你得把东西卖出去,你的营销/销售能力怎么样? 所以这样的人工智能项目并不需要技术大牛,反而是创业者最好深悉这个行业,知道什么方案能解决行业痛点,甚至有上下游的能力去推广销售掉解决方案或产品。 *图片来源:网络 二 只做技术提供商行不通 我以前写过一篇文章,在人工智能领域创业,只做技术提供商我认为是死路一条,为什么这样讲? 第一,技术提供商很多是大公司的赛道。包括人脸识别、声音识别、机器翻译,很多是大公司做的,它不需要靠这个赚钱,所以这当中很多都是大公司的赛道。基于API(应用程序编程接口)的商业模式也没有扩展性,因为百度不收费,腾讯也不会收费,再加上你本来就需要开放接口换取更多用户数据,所以你只做API没有任何收入。 第二,数据在很多情况下比算法重要得多。随着谷歌TensorFlow等生态系统的成熟,很多领域都会有训练好的模型可以用来参考(出Demo会更快),创业者只要有足够的数据来训练参数就好了。所以未来算法的壁垒会越来越低,如果这个公司的核心竞争力是算法,那将非常危险。 除此之外,在一些「非关键性应用」上,两个算法之间的微小差别其实对使用者感知并不明显。与此相对应的,数据壁垒却是非常明显。最近这一年中国涌现了一二十个「AI看医学影像」的公司,这个生意里面,怎么拿到海量的、准确的、标注过的数据,比谁的算法好要有价值得多。 第三,极易被上下游挤压,只做算法生存空间是非常小的。我们在投资当中会很看重公司的防御性,很多公司做比较低成本的雷达给扫地机器人用,但随着扫地机器人的发展,最后做扫地机器人的公司要么把你买掉,要么自己就做。美国有一个芯片公司就是做视觉嵌入式计算的,以前最大的客户就是大疆,但是大疆把2C的商业垄断之后,大疆做的第一件事就是自己做芯片。 第四,如果只是做技术提供商很容易被上下游替代。活得不滋润的是研发公司,最早的苹果是自己研发芯片,三星、华为、小米也都是自己研发芯片。这其实是一个产业链通用规律:如果一个产业链有很多环节,在某一个环节有一个垄断者,j2直播,那么这个垄断者就有向上下游延展的机会,哪怕不延展也会把整个产业链的大部分利润吃掉。正如之前的PC产业链,有内存、硬盘、操作系统、整机……但Windows和Intel却赚走了绝大部分利润。 (责任编辑:本港台直播) |