本港台开奖现场直播 j2开奖直播报码现场
当前位置: 新闻频道 > IT新闻 >

码报:​ANN如何模拟人类大脑?实例分析到底如何应用(2)

时间:2017-07-26 19:14来源:报码现场 作者:j2开奖直播 点击:
6.上述网络架构称为“前馈网络”,你可以看到 输入信号只在一个方向(从输入到输出)流动。 我们还可以创建信号在两个方向上流动的“反馈网络”。

6.上述网络架构称为“前馈网络”,你可以看到输入信号只在一个方向(从输入到输出)流动。我们还可以创建信号在两个方向上流动的“反馈网络”。

7.具有高精度的良好模型提供了非常接近实际值的预测。因此,在上表中,列X值应该非常接近于列W值。预测误差是列W和列X之间的差异:

8.获得具有准确预测的良好模型的关键是找到最小化预测误差的“W权重的最优值”。这是使用“反向传播算法”实现的,这使ANN成为一种学习算法,因为通过从错误中学习,模型得到了改进。

9.最常见的优化方法称为“梯度下降”,其中使用了迭代不同的W值,并对预测误差进行了评估。 因此,为了得到最优的W值,W值的变化很小,对预测误差的影响进行了评估。 最后,W的这些值被选为最优的,随着W的进一步变化,误差不会进一步降低。 要了解梯度下降的更详细的信息,请参考

神经网络的主要优点:

1.ANN有一些关键优势,使它们更适合适用于某些问题和情况:

2.ANN有能力去学习和建模非线性和复杂的关系,这非常重要,因为在现实生活中,输入和输出之间的许多关系是非线性的,也是复杂的。

3.ANN可以通用化—在从初始输入及其关系学习之后,它可以推断出看不见的数据之间的看不见的关系,从而使得模型能够概括和预测未知数据。

与许多其他预测技术不同,ANN不会对输入变量施加任何限制(例如,atv,如何分配)。此外,许多研究已经表明,ANN可以更好地模拟异方差性,atv,即具有高易变性和非常数方差的数据,因为它具有在数据中学习隐藏关系的能力,而不在数据中强加任何固定的关系。这在数据波动率很高的金融时间序列预测(例如股票价格)中非常有用。

几个应用

由于其一些奇妙的特性,ANN在很多领域中都会产生作用:

1.图像处理和字符识别:ANN具有很多输入的能力,可以处理它们来推断隐藏以及复杂的非线性关系,ANN在图像和字符识别中起着重要的作用。手写字符识别在欺诈检测(例如银行欺诈)甚至国家安全评估中有很多应用。图像识别是一个不断增长的领域,广泛应用于社会媒体的面部识别,医学中的癌症滞留以及农业和国防用途的卫星图像处理。目前,对神经网络的研究为深层神经网络铺平了道路,形成了“深度学习”的基础,现已开创了计算机视觉、语音识别、自然语言处理等一系列令人兴奋的转型创新,尤其是在自动驾驶汽车领域。

2.预测:在日常业务决策(例如销售、产品之间的财务分配、产能利用率)、经济和货币政策、金融和股票市场中广泛需要预测。更常见的是,预测问题是复杂的,例如,预测股价是一个复杂的问题,有许多潜在因素(一些是已知的,一些是未知的)。传统的预测模型考虑到这些复杂的非线性关系,引起了局限性。鉴于其能够建模和提取不可见的特征和关系,ANN以正确的方式应用,可以提供强大的替代方案。此外,与这些传统模型不同,ANN不对输入和剩余分布施加任何限制。

例如,在该领域进行的研究非常热——最近在使用LSTM和循环神经网络进行预测方面取得了进展。

ANN是具有广泛应用的强大的模型。以上,我列举了几个突出的例子,但它们在医药、安全、银行/金融以及政府、农业和国防等领域有着广泛的应用。

相关文章:

神经网络不直观性质综述

进化设计:如何用AutoML进化神经网络

(责任编辑:本港台直播)
顶一下
(0)
0%
踩一下
(0)
0%
------分隔线----------------------------
栏目列表
推荐内容