基于用户进行个性化推荐是对用户进行深度分析和交流的结果,提升了用户的交互式体验。传统的人工推荐是遍地撒网地推荐,没有对用户进行细致地划分和筛选,机器推荐以用户特点和习惯为基础进行推荐,用户能够得到双向的交流和沟通,用户的行为也能对下一步的推荐产生影响,在一定程度上得到了反馈,提升了用户的交互式体验。 ⑥ 分门别类,运营细化 个性化推荐也有利于平台对内容进行分类,从而利于平台精细化管理和运营。信息时使得平台不断涌现,各种形式的内容越来越丰富,用户手机端展示的区域有限,个性化推荐能够使商家更好地针对不同客户对内容进行分类,有利于精细化运营。 2. 质疑的观点主要有: ① 画地为牢,思维设限 个性化新闻体验容易让思想裹足不前。个性化推荐的结果是基于用户的历史数据和历史行为,基于相似用户或者相似物品进行的推荐,在一定程度上将用户感兴趣的内容固定在一个特定的闭环里,在为用户筛选信息的同时也为用户隔断了很多信息。个性化推荐的内容采集自你的兴趣,又决定了你的兴趣。因此,无法接触“新”事物自然就不能培养新的兴趣,容易让用户越来越狭隘。 ② 人心变幻,机器何解 机器推荐无法识别阅读场景的变化而带来的需求的变化,无法感知用户为什么需要阅读,难以匹配人类情感的复杂程度。例如在某一个阶段,我们因为大家都在讨论某件事而去关注这件事,但这并不意味着我们对类似的事情都感兴趣。 ③ 审美下线,好坏难分 个性化推荐的难度对推荐内容的质量带来了挑战。以往评价一篇文章的好坏对编辑来说都没那么容易,如今机器推荐很容易忽略质量这一维度。机器算法不准确会使标题党内容混杂出现,机器推荐可能会把一篇没有价值的文章推荐的很高,也有可能把真正有价值的文章埋没掉,机器推荐只能从外部数据来衡量你的文章有没有价值,目前还没有办法从内容的本质上分析有没有价值。 ④ 耗时较长,总慢半拍 基于海量数据的个性化推荐行为耗时较长,即时性较差。如新闻推荐存在及时性问题,需要不断更新,通过分析用户的历史行为、对比类似用户等数据分析工作耗时较长,不易在第一时间形成推荐结果。并且协同过滤等方法还存在冷启动的问题,即在用户体验之初,并未形成成熟的历史数据时,需要经过很长的时间收集用户点击日志数据,从而产生推荐。 ⑤ 热点共通,个体趋同 并不是所有的用户都彼此相等,但协同过滤方法不考虑用户之间的个体差异。例如,我们观察到娱乐新闻不断推荐给大多数用户,即使用户不点击娱乐的故事。原因是,娱乐新闻一般都是非常流行的,因此总是从一个用户的“邻居”的娱乐故事足够的点击进行推荐。 3. 未来的机遇在哪里? 未来的机遇在于两大推动力:业界对长尾金矿的商业动力;用户强烈的个性化需求的推动。 ① 长尾金矿 个性化推荐能够帮助用户发现更多优质的长尾内容,提高平台商业价值。一般平台用户访问的只局限在热门的10%左右的内容,很多小众的、冷门的内容却沉在数据库中不易被发现,我们将其称之为长尾内容。 按长尾理论,由于成本和效率的因素,当商品储存流通展示的场地和渠道足够宽广,商品生产成本急剧下降以至于个人都可以进行生产,并且商品的销售成本急剧降低时,几乎任何以前看似需求极低的产品,只要有卖,都会有人买。个性化推荐能够通过协同过滤中基于用户的推荐技术将小众喜欢的长尾内容扩散开来,充分挖掘长尾内容,产生长尾金矿。 ② 时代刚需 我们所处的时代已经变化了。经过20年发展,互联网变成了移动互联网,现在即将融合AI进入IOT时代,终端和信息正在以核爆的态势发生急剧膨胀,用户在海量的数据中想要找到他们需要的信息将变得越来越难。在这种情况下,传统的搜索引擎已经力不从心。早先最具代表性的就是分类目录的雅虎和搜索引擎的谷歌,已经进入死胡同,想要通过搜索引擎去了解一个陌生领域的知识,效率极低! (责任编辑:本港台直播) |