本港台开奖现场直播 j2开奖直播报码现场
当前位置: 新闻频道 > IT新闻 >

报码:训练的神经网络不工作?一文带你跨过这37个坑(2)

时间:2017-07-25 19:25来源:118图库 作者:www.wzatv.cc 点击:
CS231n 指出了一个常见的陷阱:「任何预处理数据(例如数据均值)必须只在训练数据上进行计算,然后再应用到验证、测试数据中。例如计算均值,然后

CS231n 指出了一个常见的陷阱:「任何预处理数据(例如数据均值)必须只在训练数据上进行计算,然后再应用到验证、测试数据中。例如计算均值,然后在整个数据集的每个图像中都减去它,再把数据分发进训练、验证、测试集中,这是一个典型的错误。」此外,要在每一个样本或批量(batch)中检查不同的预处理。

III. 实现的问题

16. 试着解决某一问题的更简易的版本。

这将会有助于找到问题的根源究竟在哪里。例如,如果目标输出是一个物体类别和坐标,那就试着把预测结果仅限制在物体类别当中(尝试去掉坐标)。

17.「碰巧」寻找正确的损失

还是来源于 CS231n 的技巧:用小参数进行初始化,不使用正则化。例如,j2直播,如果我们有 10 个类别,「碰巧」就意味着我们将会在 10% 的时间里得到正确类别,Softmax 损失是正确类别的负 log 概率: -ln(0.1) = 2.302。然后,试着增加正则化的强度,这样应该会增加损失。

18. 检查你的损失函数

如果你执行的是你自己的损失函数,那么就要检查错误,并且添加单元测试。通常情况下,损失可能会有些不正确,并且损害网络的性能表现。

19. 核实损失输入

如果你正在使用的是框架提供的损失函数,那么要确保你传递给它的东西是它所期望的。例如,在 PyTorch 中,我会混淆 NLLLoss 和 CrossEntropyLoss,因为一个需要 softmax 输入,而另一个不需要。

20. 调整损失权重

如果你的损失由几个更小的损失函数组成,那么确保它们每一个的相应幅值都是正确的。这可能会涉及到测试损失权重的不同组合。

21. 监控其它指标

有时损失并不是衡量你的网络是否被正确训练的最佳预测器。如果可以的话,使用其它指标来帮助你,比如精度。

22. 测试任意的自定义层

你自己在网络中实现过任意层吗?检查并且复核以确保它们的运行符合预期。

23. 检查「冷冻」层或变量

检查你是否无意中阻止了一些层或变量的梯度更新,这些层或变量本来应该是可学的。

24. 扩大网络规模

可能你的网络的表现力不足以采集目标函数。试着加入更多的层,或在全连层中增加更多的隐藏单元。

25. 检查隐维度误差

如果你的输入看上去像(k,H,W)= (64, 64, 64),那么很容易错过与错误维度相关的误差。给输入维度使用一些「奇怪」的数值(例如,每一个维度使用不同的质数),并且检查它们是如何通过网络传播的。

26. 探索梯度检查(Gradient checking)

如果你手动实现梯度下降,梯度检查会确保你的反向传播(backpropagation)能像预期中一样工作

IV. 训练问题

报码:训练的神经网络不工作?一文带你跨过这37个坑

27. 一个真正小的数据集

过拟合数据的一个小子集,并确保其工作。例如,仅使用 1 或 2 个实例训练,并查看你的网络是否学习了区分它们。然后再训练每个分类的更多实例。

28. 检查权重初始化

如果不确定,请使用 Xavier 或 He 初始化。同样,初始化也许会给你带来坏的局部最小值,因此尝试不同的初始化,看看是否有效。

29. 改变你的超参数

或许你正在使用一个很糟糕的超参数集。如果可行,尝试一下网格搜索。

30. 减少正则化

太多的正则化可致使网络严重地欠拟合。减少正则化,比如 dropout、批规范、权重/偏差 L2 正则化等。在优秀课程《编程人员的深度学习实战》()中,Jeremy Howard 建议首先解决欠拟合。这意味着你充分地过拟合数据,并且只有在那时处理过拟合。

31. 给它一些时间

也许你的网络需要更多的时间来训练,在它能做出有意义的预测之前。如果你的损失在稳步下降,那就再多训练一会儿。

32. 从训练模式转换为测试模式

一些框架的层很像批规范、Dropout,而其他的层在训练和测试时表现并不同。转换到适当的模式有助于网络更好地预测。

33. 可视化训练

监督每一层的激活值、权重和更新。确保它们的大小匹配。例如,参数更新的大小(权重和偏差)应该是 1-e3。

考虑可视化库,比如 Tensorboard 和 Crayon。紧要时你也可以打印权重/偏差/激活值。

寻找平均值远大于 0 的层激活。尝试批规范或者 ELUs。

(责任编辑:本港台直播)
顶一下
(0)
0%
踩一下
(0)
0%
------分隔线----------------------------
栏目列表
推荐内容