陈桦 编译自 DeepMind Blog 量子位 报道 | 公众号 QbitAI
人类,可以在行动之前预想到后果,这是我们认知能力中一种强大的工具。 举例来说,当我们将玻璃杯放在桌子边缘时,我们很可能会考虑一下放得稳不稳,是否会掉下来。基于对后果的思考,atv,我们可能会调整玻璃杯的位置,避免掉在地上打碎。 这种慎重性的思考本质上是“想象力”。这是一种人类独有的能力,也是日常生活中重要的工具。 如果我们希望算法实现同样的复杂行为,那么算法也必须能够“想象”,对未来进行推理。除此以外,开奖,算法必须利用这些知识构建计划。 在这个领域,我们已看到了丰富的成果,例如AlphaGo这样的程序。AlphaGo利用“内部模型”,分析每步操作会在未来带来什么样的结果,从而进行推理和计划。 这些内部模型非常强大,因为围棋是一种“完美的”环境。围棋有明确定义的规则,因此在几乎任何情况下都可以非常准确地预测结果。 然而,现实世界情况更复杂,规则没有明确定义,预期之外的结果常常会出现。即使是最聪明的人工智能系统,在这种复杂环境中展开想象都会是漫长而成本高昂的过程。 在两篇最新论文中,我们描述了一类新方法,让人工智能建立以想象力为基础的计划能力。我们还提出了一种架构,给人工智能系统提供新方式,去学习并构建计划,最大化任务效率。对于不完美模型,这些架构高效而健壮,可以利用灵活的策略去发挥想象力。 这两篇新论文是: Imagination-Augmented Agents for Deep Reinforcement Learning https://arxiv.org/abs/1707.06203 Learning model-based planning from scratch https://arxiv.org/abs/1707.06170 想象力增强的人工智能系统 我们介绍的这些人工智能系统受益于“想象编码器”。这种神经网络可以学会提取有用信息,用于未来的决策,同时忽略不相关的信息。 这样的人工智能系统拥有许多独特之处: 它们学会表达内部模拟结果。这意味着它们可以利用模型,捕捉粗略的环境变化,即使这样的变化并不完美。 它们有效地利用想象力。它们可以利用多条想象轨迹来适配问题。此外,编码器也提高了效率。这种编码器可以从奖励之外的想象中提取额外信息。这样的想象轨迹并不一定带来最高的回报,但可能包含有用的线索。 它们可以学习不同策略,从而构建计划。它们可以选择继续当前的想象轨迹,或重新开始一条想象轨迹。或者说,它们可以使用不同的想象模型,而这些模型拥有不同的精确度和计算成本。这带来了广泛而高效的规划策略,而不会被局限于单一方法,导致对不完美环境的适应性受限。 架构的测试 我们利用多种任务去测试提出的架构,包括解谜游戏《Sokoban》,以及一款太空飞船导航游戏。这两款游戏都需要前瞻性的规划和推理,因此是测试我们人工智能系统的绝佳环境。 在《Sokoban》游戏中,人工智能系统将盒子推到目标之上。由于盒子只能向前推,因此许多操作是不可逆的(例如盒子一旦推到角落,就无法再拉出来)。 在太空飞船游戏中,人工智能系统必须按照固定次数去启动推进器,使飞船保持稳定。这样的操作需要适应不同星球的引力。因此,这是一种非线性的复杂持续控制任务。 为了限制这两种任务中的试错次数,每一关卡都用程序生成,而人工智能系统只能尝试一次。这就鼓励人工智能系统在现实环境测试之前,尝试不同的策略。 △人工智能agent在不了解规则的情况下,玩Sokoban游戏时的表现。我们在某些时间点,对agent想象的五种未来进行可视化,agent会根据这种信息决定该如何采取行动。
△上图是agent在太空飞船游戏中的表现,红线是实际的轨迹,绿线和蓝线是agent“想象”的轨迹。 对于这两种任务,想象力增强的人工智能系统表现得都比没有想象力的更好。它们可以根据较少的经验进行学习,并且有能力处理建模环境中的不完美之处。 (责任编辑:本港台直播) |