本港台开奖现场直播 j2开奖直播报码现场
当前位置: 新闻频道 > IT新闻 >

报码:洗白“黑科技”深度学习(3)

时间:2017-07-14 02:05来源:118论坛 作者:118开奖 点击:
来到21世纪,正如我们前面所说,在21世纪的十几年间,我们的数据量和计算能力都增长了不少,这为神经网络证明其能力提供了条件。事实上,在Hinton的

来到21世纪,正如我们前面所说,在21世纪的十几年间,我们的数据量和计算能力都增长了不少,这为神经网络证明其能力提供了条件。事实上,在Hinton的带领下,神经网络在2000年之后逐渐开始在一些比较小众的领域获得成功。而真正对学术界产生震动的,是2012年,Hinton实验室的学生Alex Krizhevsky用基于深度神经网络的方法,在ILSVRC(ImageNet Large Scale Visual Recognition Challenge)图像识别挑战赛中一战成名,其网络结构也被人们称为AlexNet。在那之前,图像识别领域已经被基于支持向量机的算法霸占多年,而AlexNet不仅打败支持向量机,而且将错误率降低了将近一半。自此之后,atv,图像识别算法的冠军就一直是深度学习算法。

图3 基于深度学习的算法,让图像识别精度在过去几年大幅度提升

除了在图像识别领域获得巨大成功,在短短的几年之内,在各种场景下,基于深度神经网络的算法都横扫其他机器学习算法。包括语音识别、自然语言处理、搜索引擎、甚至自动控制系统。DeepMind的Alex Graves团队在2014年的一篇论文中提出的神经图灵机(Neural Turing Machine)结构,以及后来在2016年提出的DNC(Deep Neural Computer)结构,甚至可以成功学习简单的算法,这不禁让我开始遐想有一天,计算机可以自己给自己编程。

深度学习给企业带来的影响 深度学习的端到端架构,降低了企业引入深度学习的成本

相比其他经典的机器学习算法来说,深度学习需要人工干预的比例小很多。比如,在经典机器学习中,特征工程占用了科学家们开发算法的大部分精力,对于某些问题,比如图像识别、语音识别,科学家们花了几十年时间来寻找性能更好的特征。深度学习改变了这一情况。深度学习接收原始数据,在神经网络的训练过程中,寻找最适合的特征。事实证明,机器自己找到的特征,比人类科学家用几十年找到的特征性能更好。正是由于深度学习的这一特点,深度学习的一个明显趋势,是端到端的解决问题。

比如下图所示的语音识别。经典语音识别需要对原始数据提取特征(比如梅尔倒谱系数),将提取到的特征建立时间序列模型(比如隐式马尔科夫模型),得到声学模型,然后根据发声词典,将输入信号映射为一些音节,最后,根据预先定义好的语言模型,将音节转换为有意义的文字。这其中,特征提取、时间序列建模、发声词典等都需要人工预先定义好,对于不同的语种,比如中文和英文,还要使用不同的模型。

图4 端到端的深度学习越来越流行

在深度学习流行起来的初期,语音识别流程中的特征提取以及时间序列建模等,都用深度神经网来替代了。到了最近几年,科学家发现,对于语音识别这样的问题,甚至流水线都是多余的,直接将原始数据接入到神经网络中,就能输出我们期望的文本,这样的结构要比人工设计流程得到的结果更好。

这种端到端的深度学习,在其他领域也被验证是可行的。比如自动驾驶技术,在MIT的自动驾驶项目中,就是用端到端的深度强化学习技术,输入是路况的所有信息,输出就是对汽车的指令,比如加速、刹车、方向盘角度等等。

深度学习的端到端架构,降低了企业引入深度学习的成本。过去,企业要引入机器学习,需要招聘一个科学家团队,同时还需要一个开发团队,将科学家所设计的算法模型翻译成生产环境代。这样的开发模式不仅成本高,响应速度也非常慢。而深度学习的端到端架构,对于科学家的要求降低了很多,而且,由于不需要通过特征工程来寻找特征,开发周期也大大缩短。对于很多规模不大、但希望朝智能化演进的企业来说,先尝试引入深度学习是个不错的选择。

智能时代的产品研发将由算法驱动

在传统的软件开发中,用户的交互方式是确定的,业务流程也是确定的;当我们尝试将人工智能技术融入到产品中,需要面对大量的不确定性。

(责任编辑:本港台直播)
顶一下
(0)
0%
踩一下
(0)
0%
------分隔线----------------------------
栏目列表
推荐内容