一旦符号-概念关联网络学会了词汇的概念,学会了通过符号指令操纵它们的方式,开发者就可以通过口头指令使其将熟悉的概念重组成新概念,而不需要更多的图片作为输入样例。 通过这些指令,符号-概念关联网络可以想象出大量新颖的视觉概念,如苹果的颜色(“蓝色苹果”意味着“蓝色”和“苹果”两种属性)或苹果的种类。 图丨符号-概念关联网络通过语言指令遍历概念层次,从像“红色地板的蓝色房间有一个白色手提箱”这样的具体概念到更一般的概念“手提箱”,然后再回到一个更加具体的概念“一个有粉色地板的黄色房间有一个绿色手提箱”。在每一次遍历过程中,都要求符号-概念关联网络想象对应的概念。最后,开发人员要求符号-概念关联网络理解“西装”这个词的概念,虽然它从来没有见过西装,但是它却能够想象出西装的大致样子。 这项工作不同于先前的工作: 这项工作完全基于感官数据并能够从极少的样例(图片-单词对)中学习。深度学习虽然能学习概念,但需要成千上万张图片样例。 符号-概念关联网络主要从无监督的观察中学习视觉元素和抽象的概念;对于标签化的数据,仅仅需要5个样例就可能学会一个概念。一旦训练完成,该网络能够产生与特定图像相对应的不同概念,也能够想象与特定概念相对应的对象,即使之前它并没有接触过这些概念。 图丨符号-概念关联网络想象的“白色手提箱”的可能样子;右图:从“橙色地板的粉色房间中有一个青色帽子”的图像中产生的概念。 利用符号指令,重组已有概念并形成新概念的能力使机器能够理解像“宇宙”、“人文主义”、“经济学”这样的抽象概念,这是一种惊人的能力。尽管DeepMind的算法还有很长一段路要走,但是这项工作很大程度上证明了算法能够以无监督的方式学习,并能够思考类似于人类使用的那些抽象概念。 -End- 参考: https://deepmind.com/blog/imagine-creating-new-visual-concepts-recombining-familiar-ones/ https://arxiv.org/abs/1707.03389 欲知会员计划详情,请点击以上图片 (责任编辑:本港台直播) |