上图是 RON 对象检测总览。给定一张输入图像,网络首先计算骨干网络的特征。然后,(a)添加反向连接;(b)生成 objectness prior;(c)在相应的 CNN 尺度和位置上检测物体。 上图是生成自特定图像的 objectness prior。在此例中,沙发表现为(a)和(b),棕色的狗表现为(c),斑点狗表现为(d)。在 objectness prior 的引导下,网络生成了检测结果。 更多根据图像生成的 Objectness Prior 图 摘要 我们提出了 RON,一个有效、高效的通用对象检测框架。我们的想法是巧妙地结合基于区域(region-based,例如 Faster R-CNN)和不基于区域(region-free,例如 SSD)这两种方法的优点。在全卷积架构下,RON 主要关注两个基本问题:(a)多尺度对象定位和(b)负样本挖掘。为了解决(a),我们设计了反向连接,使网络能够检测多层 CNN 中的对象。为了处理(b),我们提出了 objectness prior,显著减少对象搜索空间。我们通过多任务损失函数联合优化了反向连接、objectness prior 和对象检测,因此RON 可以直接预测各种特征图所有位置的最终检测结果。 在PASCAL VOC 2007,PASCAL VOC 2012 和 MS COCO 基准测试的大量实验证明了 RON 的出色性能。具体来说,使用 VGG-16 和低分辨率 384×384 输入,网络在 PASCAL VOC 2007 上获得 81.3% mAP,在 PASCAL VOC 2012 数据集上获得80.7% mAP。数据集越大,难度越大,优势就越明显。在 MS COCO 数据集上的结果就证明了这一点。测试阶段使用 1.5G GPU 内存,网络速度为 15 FPS,比 Faster R-CNN 计数器快 3 倍。 论文地址:https://arxiv.org/abs/1707.01691 (责任编辑:本港台直播) |