本港台开奖现场直播 j2开奖直播报码现场
当前位置: 新闻频道 > IT新闻 >

谷歌云TensorFlow性价比测试:CPU比GPU表现更好(2)

时间:2017-07-10 03:01来源:118图库 作者:j2开奖直播 点击:
在这个环节中,GPU比CPU快得多。数量较少的CPU配置,没带来太大的优势,要知道正式的fasttext实现视为大量使用CPU设计的,并且能够很好的进行并行处理。

在这个环节中,GPU比CPU快得多。数量较少的CPU配置,没带来太大的优势,要知道正式的fasttext实现视为大量使用CPU设计的,并且能够很好的进行并行处理。

双向长短期记忆(LSTM)架构 对于处理诸如IMDb评论之类的文本数据非常有用,但是在我之前的测试文章里,有Hacker News的评论指出,开奖,TensorFlow在GPU上使用了LSTM的低效实现,所以也许差异将会更加显著。

谷歌云TensorFlow性价比测试:CPU比GPU表现更好

谷歌云TensorFlow性价比测试:CPU比GPU表现更好

等等,什么?双向LSTM的GPU训练比任何CPU配置都慢两倍以上?哇哦(公平地说,基准测试使用Keras LSTM默认的implementation=0,这对CPU更好;而在GPU上使用implementation=2更好,但不应该导致这么大的差异)

最后,LSTM文本生成 尼采的著作与其他测试类似,但没有对GPU造成严重打击。

谷歌云TensorFlow性价比测试:CPU比GPU表现更好

谷歌云TensorFlow性价比测试:CPU比GPU表现更好

结论

事实证明,使用64个vCPU不利于深度学习,因为当前的软/硬件架构无法充分利用这么多处理器,通常效果与32个vCPU性能相同(甚至更差)。

综合训练速度和成本两方面考虑,用16个vCPU+编译的TensorFlow训练模型似乎是赢家。编译过的TensorFlow库能带来30%-40%的性能提升。考虑到这种差异,谷歌不提供具有这些CPU加速功能的预编译版本TensorFlow还是令人吃惊的。

这里所说成本优势,只有在使用谷歌云Preemptible实例的情况下才有意义,Google Compute Engine上的高CPU实例要贵5倍,完全可以消弭成本优势。规模经济万岁!

使用云CPU训练的一个主要前提是,你没那么迫切的需要一个训练好的模型。在专业案例中,时间可能是最昂贵的成本;而对于个人用户而言,让模型兀自训练一整晚也没什么,而且是一个从成本效益方面非常非常好的选择。

这次测试的所有脚本,开奖,都可以在GitHub里找到,地址:

https://github.com/minimaxir/deep-learning-cpu-gpu-benchmark

另外还可以查看用于处理日志的R/ggplot2代,以及在R Notebook中的可视化展现,其中有关于这次测试的更详细数据信息。地址:

【完】

一则通知

量子位读者5群开放申请,对人工智能感兴趣的朋友,可以添加量子位小助手的微信qbitbot2,申请入群,一起研讨人工智能。

另外,量子位大咖云集的自动驾驶技术群,仅接纳研究自动驾驶相关领域的在校学生或一线工程师。申请方式:添加qbitbot2为好友,备注“自动驾驶”申请加入~

招聘

量子位正在招募编辑/记者等岗位,工作地点在北京中关村。相关细节,请在公众号对话界面,回复:“招聘”。

追踪人工智能领域最劲内容

(责任编辑:本港台直播)
顶一下
(0)
0%
踩一下
(0)
0%
------分隔线----------------------------
栏目列表
推荐内容