本港台开奖现场直播 j2开奖直播报码现场
当前位置: 新闻频道 > IT新闻 >

wzatv:LSTM、GRU与神经图灵机:详解深度学习最热门的循(2)

时间:2017-07-09 13:36来源:本港台现场报码 作者:www.wzatv.cc 点击:
当误差被反向传播通过大型结构时,非线性导数的极限(extremity)的计算会增长,会使功劳分配(credit assignment)困难甚至是不可能,使得反向传播失败。

当误差被反向传播通过大型结构时,非线性导数的极限(extremity)的计算会增长,会使功劳分配(credit assignment)困难甚至是不可能,使得反向传播失败。

长短期记忆网络

使用传统的通过时间的反向传播(BPTT)或实时循环学习(RTTL/Real Time Recurrent Learning),在时间中反向流动的误差信号往往会爆炸(explode)或消失(vanish)

反向传播误差的时间演化指数式地依赖于权重的大小。权重爆炸可能会导致权重振荡,而权重消失则可能导致学习弥合时间滞后并耗费过多时间或根本不工作。

LSTM 是一种全新的循环网络架构,可用一种合适的基于梯度的学习算法进行训练。

LSTM 是为克服误差反向流动问题(error back-flow problem)而设计的。它可以学习桥接超过 1000 步的时间间隔。

在有噪声的、不可压缩的输入序列存在,而没有短时间滞后能力的损失时,这是真实的。

通过一种有效的基于梯度的算法,误差反向流动问题可以克服,因为该算法让网络架构可以强迫常量(因此不会有爆炸或消失)误差流过特殊单元的内部状态。这些单元可以减少「输入权重冲突(Input Weight Conflict)」和「输出权重冲突(Output Weight Conflict)」的影响。

输入权重冲突:如果输入是非零的,则同样的输入权重必须被同时用于存储特定的输入并忽略其它输入,那么这就将会经常收到有冲突的权重更新信号。

这些信号将会试图使该权重参与存储输入并保护该输入。这种冲突会使学习变得困难,并且需要一个对背景更敏感的机制来通过输入权重控制「写入操作(write operations)」。

输出权重冲突:只要一个单元的输出是非零的,那么这个单元的输出连接的权重就将吸引在序列处理过程中生成的有冲突的权重更新信号。

这些信号将试图使正在输出的权重参与进来,获取存在在处理单元中信息,并且在不同的时间保护后续的单元免受正被馈送的单元的输出的干扰。

这些冲突并不特定于长期滞后(long-term lags),并且也可以同样影响到短期滞后(short-term lags)。值得注意的是,随着滞后的增长,存储的信息必须被保护起来免受干扰,尤其是在学习的高级阶段。

网络架构:不同类型的单元都可能传递关于网络当前状态的有用信息。比如说,一个输入门(输出门)可能会使用来自其它记忆单元(memory cell)的输入来决定是否存储(读取)其记忆单元中的特定信息。

记忆单元包含门(gate)。门特定于它们调解的连接。输入门是为了纠正输入权重冲突,而输出门是为了消除输出权重冲突。

门:具体来说,为了缓解输入和输出权重冲突以及干扰,我们引入了一个乘法输入门单元来保护存储的记忆内容免受不相关输入的干扰,还引入了一个乘法输出门单元来保护其它单元免受存储中当前不相关记忆内容的干扰。

wzatv:LSTM、GRU与神经图灵机:详解深度学习最热门的循

LSTM 架构示例。这个 LSTM 网络带有 8 个输入单元、4 个输出单元和 2 个大小为 2 的记忆单元模块。in1 是指输入门,out1 是指输出门,cell1 = block1 是指 block 1 的第一个记忆单元。来自 1997 年的《Long Short-Term Memory》

因为处理元素的多样性和反馈连接的,LSTM 中的连接比多层感知器的连接复杂。

记忆单元模块:记忆单元共享同一个输入门和同一个输出门,构成一种名叫记忆单元模块(memory cell block)的结构。

记忆单元模块有利于信息存储;就像传统的神经网络一样,在单个单元内编一个分布式输入可不是一件容易的事情。一个大小为 1 的记忆单元模块就是一个简单的记忆单元。

学习(Learning):一种考虑了由输入和输出门导致的修改过的、乘法动态的实时循环学习(RTRL/Real Time Recurrent Learning)的变体被用于确保通过记忆单元误差的内部状态反向传播到达「记忆单元网络输入(memory cell net inputs)」的非衰减误差(non-decaying error)不会在时间中被进一步反向传播。

(责任编辑:本港台直播)
顶一下
(0)
0%
踩一下
(0)
0%
------分隔线----------------------------
栏目列表
推荐内容