通过高级驾驶辅助系统(ADAS)中的传感器获得的图像由各种环境数据组成,图像过滤可以用来决定物体分类样例,排除无关的数据点。在对物体分类前,模式识别是一项重要步骤,这种算法被定义为数据简化算法。数据简化算法可以减少数据集的边缘和折线(拟合线段)。 PCA(原理分量分析)和HOG(定向梯度直方图),支持向量机(Support Vector Machines,SVM)是ADAS中常用的识别算法。我们也经常用到K最近邻(KNN,K-NearestNeighbor)分类算法和贝叶斯决策规则。 支持向量机(SVM) SVM依赖于定义决策边界的决策层概念。决策平面分隔由不同的类成员组成的对象集。下面是一个示意图。在这里,物体要么属于红色类要么绿色类,分隔线将彼此分隔开。落在左边的新物体会被标记为红色,落在右边就被标记为绿色。 回归算法 这种算法的专长是预测事件。回归分析会对两个或更多变量之间的关联性进行评估,并对不同规模上的变量效果进行对照。回归算法通常由三种度量标准驱动: 回归线的形状 因变量的类型 因变量的数量 在无人车的驱动和定位方面,图像在ADAS系统中扮演着关键角色。对于任何算法来说,最大的挑战都是如何开发一种用于进行特征选取和预测的、基于图像的模型。 回归算法利用环境的可重复性来创造一个概率模型,这个模型揭示了图像中给定物体位置与该图像本身间的关系。通过图形采样,此概率模型能够提供迅速的在线检测,同时也可以在线下进行学习。模型还可以在不需要大量人类建模的前提下被进一步扩展到其他物体上。算法会将某一物体的位置以一种在线状态下的输出和一种对物体存在的信任而返回。 回归算法同样可以被应用到短期预测和长期学习中,在自动驾驶上,则尤其多用于决策森林回归、神经网络回归以及贝叶斯回归。 回归神经网络 神经网络可以被用在回归、分类或非监督学习上。它们将未标记的数据分组并归类,或者监督训练后预测连续值。神经网络的最后一层通常通过逻辑回归将连续值变为变量0或1。 在上面的图表中,x代表输入,特征从网络中的前一层传递到下一层。许多x将输入到最后一个隐藏层的每个节点,并且每一个x将乘以相关权重w。乘积之和将被移动到一个激活函数中,在实际应用中我们经常用到ReLu激活函数。它不像Sigmoid函数那样在处理浅层梯度问题时容易饱和。 【完】 一则通知 量子位正在组建自动驾驶技术群,面向研究自动驾驶相关领域的在校学生或一线工程师。李开复、王咏刚、王乃岩等大牛都在群里。欢迎大家加量子位微信(qbitbot),备注“自动驾驶”申请加入哈~ 招聘 量子位正在招募编辑记者、运营、产品等岗位,工作地点在北京中关村。相关细节,请在公众号对话界面,回复:“招聘”。 追踪人工智能领域最劲内容 (责任编辑:本港台直播) |