Master:Master 的职责主要包括:原始计算数据以及参数矩阵的分片和分发;向 Gaia(一个基于 Yarn 二次开发的资源调度系统)申请 Worker 和 ParameterServer 所需的计算资源; 协调,管理和监控 Worker 以及 ParameterServer。 Parameter Server:ParameterServer 负责存储和更新参数,一个 Angel 计算任务可以包含多个 ParameterServer 实例,而整个模型分布式存储于这些 ParameterServer 实例中,这样可以支撑比单机更大的模型。 Worker:Worker 负责具体的模型训练或者结果预测,为了支持更大规模的训练数据,一个计算任务往往包含许多个 Worker 实例,每个 Worker 实例负责使用一部分训练数据进行训练。一个 Worker 包含一个或者多个 Task,Task 是 Angel 计算单元,这样设计的原因是可以让 Task 共享 Worker 的许多公共资源。 2.Angel 的系统框架 3.Angel 的设计理念 PS Service Angel 支持两种运行模式:ANGEL_PS & ANGEL_PS_WORKER ANGEL_PS: PS Service 模式,在这种模式下,Angel 只启动 Master 和 PS,具体的计算交给其他计算平台(如 Spark,Tensorflow)负责,Angel 只负责提供 Parameter Server 的功能。 ANGEL_PS_WORKER:启动 Master,PS 和 Worker,Angel 独立完成模型的训练。 同步协议 支持多种同步协议:除了通用的 BSP(Bulk Synchronous Parallel)外,为了解决 task 之间互相等待的问题,Angel 还支持 SSP(Stale Synchronous Parallel)和 ASP(Asynchronous Parallel) 良好的可扩展性 psf(ps function):为了满足各类算法对参数服务器的特殊需求,Angel 将参数获取和更新过程进行了抽象,提供了 psf 函数功能。用户只需要继承 Angel 提供的 psf 函数接口,j2直播,并实现自己的参数获取/更新逻辑,就可以在不修改 Angel 自身代码的情况下定制自己想要的参数服务器的接口。 自定义数据格式:Angel 支持 Hadoop 的 InputFormat 接口,可以方便的实现自定义文件格式。 自定义模型切分方式:默认情况下,Angel 将模型(矩阵)切分成大小相等的矩形区域;用户也可以自定义分区类来实现自己的切分方式。 易用性 训练数据和模型自动切割:Angel 根据配置的 worker 和 task 数量,自动对训练数据进行切分;同样,也会根据模型大小和 PS 实例数量,对模型实现自动分区。 易用的编程接口:MLModel/PSModel/AngelClient 容错设计和稳定性 PS 容错 PS 容错采用了 checkpoint 的模式,也就是每隔一段时间将 PS 承载的参数分区写到 hdfs 上去。如果一个 PS 实例挂掉,Master 会新启动一个 PS 实例,新启动的 PS 实例会加载挂掉 PS 实例写的最近的一个 checkpoint,然后重新开始服务。这种方案的优点是简单,借助了 hdfs 多副本容灾,而缺点就是不可避免的会丢失少量参数更新。 Worker 容错 一个 Worker 实例挂掉后,Master 会重新启动一个 Worker 实例,新启动的 Worker 实例从 Master 处获取当前迭代轮数等状态信息,从 PS 处获取最新模型参数,然后重新开始被断掉的迭代。 Master 容错 Master 定期将任务状态写入 hdfs,借助与 Yarn 提供的 App Master 重试机制,当 Angel 的 Master 挂掉后,Yarn 会重新拉起一个 Angel 的 Master,新的 Master 加载状态信息,然后重新启动 Worker 和 PS,从断点出重新开始计算。 慢 Worker 检测 Master 会将收集一些 Worker 计算性能的一些指标,如果检测到有一些 Worker 计算明显慢于平均计算速度,Master 会将这些 Worker 重新调度到其他的机器上,避免这些 Worker 拖慢整个任务的计算进度。 4.Spark on Angel Angel 在 1.0 版本开始,就加入了 PS-Service 的特性,不仅仅可以作为一个完整的 PS 框架运行,也可以作为一个 PS-Service,为不具备参数服务器能力的分布式框架,引入 PS 能力,从而让它们运行得更快,功能更强。而 Spark 是这个 Service 设计的第一个获益者。 作为一个比较流行的内存计算框架,atv,Spark 的核心概念是 RDD,而 RDD 的关键特性之一,是其不可变性,来规避分布式环境下复杂的各种并行问题。这个抽象,在数据分析的领域是没有问题的,能最大化的解决分布式问题,简化各种算子的复杂度,并提供高性能的分布式数据处理运算能力。 (责任编辑:本港台直播) |