Rec是一个用来验证和转换数据文件的Java应用。从第一行代码到v1版本成形,仅仅经历了一个半月的时间,作为一个开源项目,在很多方面都有着各种各样的纠结。 需求 Rec的需求源自于我们团队所做项目的特殊性:遗留系统迁移。在工作中,我们需要跟各种团队打交道,每天处理各种来自ETL(Extract、Transform、Load)过程中的数据和程序问题,而整个ETL程序运行起来过于笨重,并且还要考虑准备后端数据和各种验证问题,非常不方便。 其实在此之前,只要有一些简单的程序跑起来、能够进行一些简单的检查,比如唯一性(uniqueness)、关联关系等等,就可以在很大程度上减少我们在ETL过程中花费的时间。并且,这半年多来的实践也证实了这一点。 最初,同事的建议是写一个脚本文件来解决这个问题,这对于程序员来说当然不是什么大问题。但随着使用次数的增加,我渐渐发现一套Python脚本并不能胜任:一方面,面对复杂的业务场景,很难有一套灵活的模式去匹配所有的数据格式;另一方面,随着数据量的增长,性能也成了一个大问题。 于是我开始着手设计和实现Rec。 设计 Rec第一个可用版本的设计共花了七天的时间,基本上具备了我期望的各种能力: 可以自定义数据格式 能够进行简单的唯一性和关联关系验证 支持一些扩展的查询语法:比如,可以验证多字段组合的唯一性 性能上基本能够胜任Rec面向的数据文件格式是类CSV的文件,包括其他的一些使用分号(;)或者竖线(|)来做分隔符的文件。出于习惯,文件的Parser并没有选取现成的库,而是我自己按照Wikipedia和RFC4180的规范写出来的,基本上能够解析所有类似的文件。而且还有一个意外的发现:用空格做分隔符的文件(比如,某些日志)也是可以支持的。对于每一条数据,Rec提供了两部分组件,一部分是数据本身,另一部分是该数据的访问器(accessor)。访问器提供把字段名转换成对应数据项下标的功能:跟Spring Batch中的FieldSetMapper很像,当然在其之上还多了一层语法糖。一个典型的accessor format如下: first name, last name, {5}, phone, …, job title,{3}其中,“…”表示中间的字段全部可以忽略,{3}和{5}是占位符,表示在这些字段之间有如此多个字段也是可以忽略的。而由“…”分割成的两部分也是有差异的:在其后的字段使用的是类似Python的负数下标;换句话说,我并不需要知道本来的数据有多少个字段,只需要知道我要获取的倒数第几个是什么就可以了。 Rec的验证规则也是从简设计。由于最初的需求只有唯一性检查和关联关系检查,所以第一个版本里面就只加入了这两个功能,语法如下: unique: Customer[id] unique: Order[cust_id, prod_id] exist: Order.prod_id, Product.id每一行表示一个规则,冒号前面是规则的名字,后面是规则所需要验证的数据查询表达式。对于查询表达式,这里需要提一点,本来是设计了更多的功能,比如过滤和组合等等,在后面扩展的时候发现在语法上很难实现得更直观而且方便使用,于是就决定改用嵌入脚本引擎的方式来解决。 另外Rec第一个版本发布只有Kotlin运行时的依赖,所以完整的Jar文件只有2MB。同时,只要给对应的数据文件提供.rec格式的描述文件,再在同一目录创建一个default.rule来加入各种检验规则,就可以运行、然后得到你想要的结果了。 扩展Rec的第一个版本在某些方面是达到预期结果了的。但在那之后就发现了一些很重要的问题:首先,我们另一层的需求并没有得到满足:Rec能够帮我们验证并且找到有问题的数据,但是不能够按需来选择我们想要的内容;其次,在检查数据的同时,我们也隐含地有集成和转换数据的需求,Rec也不能够满足。 于是第一个星期以后我开始考虑对Rec进行扩展。首先是在同事的建议下把乱成一坨的代码分成多个module;其次考虑加入前面提到的过滤和格式转换的功能。
第一个步骤勉强算是完成了,但是卡在了第二步上:对于转换的规则,要不要和验证的规则放在一起?如何对这两种规则做区分?如何在过滤器中设计变量引用等细节?每一个问题都让我纠结了很多,直到最后决定放弃这一步,直接通过引入脚本引擎来实现:从最初hack Kotlin编译器的嵌入版,到决定用Java,到放弃Nashorn转而用Rhino,中间虽然辗转几次又遭遇了不少坑,但毕竟有成熟的社区经验辅以指导,还是顺利地走了下来。 Test Driven Development vs Test Driven Design (责任编辑:本港台直播) |