《纽约时报》报道还表示,可能存在一张平均脸(或类似的东西),新遇到的一张脸可能一个特征(比如眼睛距离)在一个维度上平均偏离平均脸 5 个单位,而另外一个特征(比如发际线)在这个维度上则是偏离 7 个单位。 一张人脸可以分解为多个维度,而每个脸神经元大约会编码其中 6 个维度的若干参数,整合在一起就形成了一张整体的脸。 Tsao 在接受《纽约时报》采访时表示,她印象特别深刻的是,可以设计出一整套面孔,各种特征组合,而给定的脸细胞都不会发生响应,因为这些设计出的面孔都不是细胞“擅长”识别的维度的组合。 这也排除了此前的一种人脸识别假说——脸细胞将输入的图像与一组标准的人脸数据进行比较,并从中寻找差异,而后者正是此前计算机识别人脸时常用的一种方式。
论文中提出的人脸识别模型的示意图。来源:Cell 论文 不过,科学家目前仍然不确定一切是如何联系在一起的。 但是,能够肯定一点,Leopold 在接受 Nature 采访时表示:“这项研究为大脑实际上如何去分析单个的人提供了一个更实际的替代方法。” 《纽约时报》报道称,机器学习给神经科学带来了一种悲观主义色彩,认为大脑类似黑箱,该论文则提供了反例:研究人员记录了视觉系统最高级的神经元信号,可以看到那里没有黑箱。 也就是说,揭开大脑的奥秘是完全可能的。 接下来,就是人工智能要做的事情了。 论文介绍:亮点及概要
亮点 面部图像可以使用大约 200 个脸细胞(face cell)的反应进行线性重建 脸细胞显示(display)与被编码的轴在正交平面上平直调谐(flat tuning) 轴模型比样本模型更有效、鲁棒和灵活 面部结构(patch)ML/MF 和 AM 携带有关脸的补充信息 概要 灵长类动物以惊人的速度和可靠性识别复杂的物体,比如动物的脸。本文中,我们揭示了大脑进行面部识别的代码。猕猴实验表明,在面部结构中,面部和细胞反应之间存在着非常简单的转变。通过将动物的脸格式化为高维线性空间中的点,我们发现每个脸细胞的发射速率(firing rate)与入射面部刺激在该空间单个轴上的投影成正比,这样一来,一个脸细胞就能对空间中任何位置的脸进行集合编码。使用这个代码,直播,我们可以精确地解码面部神经元群的反应,并预测关于动物脸的神经发射速率。此外,这一代码推翻了此前由来已久的假设,那就是脸细胞会对特定的面部特征进行编码。我们的研究表明,其他对象也可以由类似的度量坐标系统进行编码。 编译来源 Nature 报道: Cell 论文:(17)30538-X?_returnURL=http%3A%2F%2Flinkinghub.elsevier.com%2Fretrieve%2Fpii%2FS009286741730538X%3Fshowall%3Dtrue NYT 报道:https://www.nytimes.com/2017/06/01/science/facial-recognition-brain-neurons.html (责任编辑:本港台直播) |