由于人们已经逐渐习惯在手机上聊天的体验,同时手机屏幕很小,相对来说语音的交流会更加自然。因此微软认为图形界面的下一代将是 CaaP,所谓「对话即平台」(Conversation as Platform,CaaP)。 作为 CaaP 的技术基础,通用的对话引擎架构往往有两层,下层为面向任务的对话、信息服务和问答、通用聊天三个分别满足使用者不同需求的系统,上层则为调度系统。通过调度系统完成任务的分类和分配,直播,下层系统会根据不同的需求指向不同的 Bot,从而为用户提供流畅的交流体验。 通用对话引擎结构示意图 为了更快速、更高效的开发 Bot,微软推出了 Bot Framework。开发者只用几行语句,就能开发出满足自己需求的 Bot。其中该框架抽取意图和重要信息的功能,由 LUIS(Language Understanding Intelligent Service,微软语言理解服务)提供。 在与敦煌研究院合作的过程中,MSRA 通过使用微软的聊天对话技术为敦煌研究院快速开发了相应的客服、聊天系统,并能轻松集成于同一平台。 阅读理解 在语言之外,领域知识和常识往往在 NLP 中有非常重要的作用,阅读理解正是检测一个系统是否具备常识的最佳方式之一。 2016 年,斯坦福大学推出「NLP 领域的 ImageNet」——SQuAD 阅读理解测试集,通过给定一篇文章并准备相应问题,由算法给出问题的答案。该数据集共有 536 篇文章,107785 个相应问题,并包含训练、开发、测试三部分,评判标准分为精确匹配和部分匹配两部分。 自去年 9 月至今,MSRA 一直在该数据集的测试结果上名列第一,指标为 76.922,但距离人类 82 左右的指标还有一定距离。 SQuAD 测试集测试结果,第一位、第四位均为 MSRA 团队开发的算法系统 中国文化 MSRA 一直在考虑如何将机器翻译与中国文化相结合,因此推出了一系列如微软对联、微软字谜、微软绝句等产品。 不久前 MSRA 还推出了诗歌创作功能,即用户提交照片后可以得到与其意境相符的自由体诗歌,并已率先登陆小冰平台。 NLP 的未来会如何? 在周明博士看来,未来 5-10 年,NLP 技术走向成熟,并将迎来过去 60 年发展最迅速的时期。变化将会体现在如下 6 个部分: 口语机器翻译完全普及:效果会得到提升,但并不意味着同声翻译、专业文献彻底解决; 自然语言会话达到实用:在常见场景下,人类可以通过人机对话完成某些任务,与智能设备交流,但不代表任何任务和不同语言都能达到实用; 智能客服+人工客服完美结合大大提高效率:问答、简单的任务解决基本可以解决,复杂情况依然无法解决,需要人类智能和人工智能的结合; 自动写诗、新闻、小说、流行歌曲流行起来:输入数据后可以立刻生成新闻稿,人类只需要进行校正,或面向不同的需求进行适用更改; 语音助手、物联网、智能硬件、智能家居普及; 与其它 AI 技术共同在金融、法律、教育、医疗等垂直领域得到广泛应用。 通过对趋势的分析,MSRA 也制定了未来的研究方向,包括: 通过用户画像实现个性化服务:人类的对话是有对象的,目前机器还做不到; 通过可解释的学习洞察人类智能机理:是否会出现可解释的人工智能,可以进行修正和 debug,快速调整系统,目前还没有很好的解决; 通过知识与深度学习结合提升学习效率; 通过迁移学习实现领域自适应; 通过强化学习实现自我演化:即通过显式和隐式反馈不断提升系统; 通过无监督学习充分利用未标注数据。 在问答环节中,周明博士还回答了机器之心关心的 NLP 领域问题,比如 GAN 这种流行的学习方法对 NLP 领域是否有很大帮助?在周明博士看来,GAN 对于机器翻译、信息检索的确会带来帮助,微软也正在研究使用 GAN 来提升机器翻译。但目前 GAN 与 NLP 的结合仍处在开始阶段,「并没有突飞猛进」。 (责任编辑:本港台直播) |