这个观念有时来自“奥卡姆剃刀”,但只说了我们应该倾向于更简单的模型却没有给出原因。简单模型更可取是因为他们更易于解释和推理。但是有时与数据相容的简单假设比复杂模型更不准确。一些强有力的学习算法输出模型看起来毫无理由的复杂,甚至还会继续给复杂模型添加组件即便他们已经完美拟合了数据,但这也是它们比简单模型更准确的原因。 机器学习发现的模式可以直接被采纳 如果一个学习算法输出了一条诊断皮肤癌的规则,并且极其准确(任何符合这个条件的痣都是皮肤癌),这也不意味着你应该相信它。对于数据微小的改动都会导致算法输出同等精确却非常不同的规则。只有那些对于数据中随机扰动稳定的规则可以被相信,而不仅仅是作为预测的方式。 机器学习不久后会变成超级智慧 从每天人工智能发展的新闻来看,非常容易有一种感觉,计算机已经接近于像我们一样可以看,说话,推理;不久后就会把我们抛弃在尘土里了。我们在人工智能的第一个五十年走了条长路,机器学习是其近来成功的主要原因,然而我们还有很长的路要走。计算机可以非常好的完成特定的任务,却依然没有通用智能,也还没有人知道怎么去教它们。 好了,到这你已经知道机器学习有时比我们想象的更强力,有时却不那么好。如何使我们更好运用机器学习也取决于我们!我们要对它们有更准确的理解! (责任编辑:本港台直播) |