吴枫:在可行性方面,我的答案是肯定的。你的工作是将传感器输入变成关节参数,这和机器人行走领域很像。2015 年开始有人工智能方法进入机器人行走领域。以前的机器人一定要传感器的反馈,然后进行判断、做出动作。但是很多特殊的行为是来不及等传感器数据的,数据处理完了,机器人已经失去重心摔倒了。因此研究人员用神经网络,在只有少量信息(比如传感器被遮挡得非常厉害)的时候,对未知信息做出估计和预测,进而做出决策。这是神经网络完全可以做的。在实时性方面,这个挑战很大,主要受到计算能力的制约。实际上在人工智能的发展中,计算资源是主要的一个制约因素,如果有好的计算能力,很多方法都可以投入应用。现在很多人在做神经芯片,比 TPU 对矩阵的加速还要更进一步,用高密集度,比如百万个核,用仿生结构实现高效率低能耗的计算。 (左起)邓力、吴枫、阿尔法公社创始人许四清、诺亦腾 CTO 戴若犁及李世鹏就深度学习在动作捕捉领域应用的可能性进行讨论 (责任编辑:本港台直播) |