当替代方案的成本和可行性受限时,创造价值的空间就更大。在一些有吸引力的案例中,由于人工智能可以实现之前无法实现的事情,因此没有实际的替代方案。在多数情况下,我们都能借助对人或其他资源的充分投资找到替代方案。当一家企业的替代方案成本极高、十分稀少、无法获取或扩展时,价值创造的空间就显得尤为重要。 劳动力通常是数字化的直接替代方案,也是最贵的替代方案。多数英国机器学习创业公司关注的4大行业中,金融、IT和公用事业3个行业的年薪最高。我们认为专业服务领域有更多机会。
△按行业类别分类的雇员年薪 4. 机器学习的适用性 机器学习与企业当前面对的挑战匹配性如何?机器学习很适合解决费力、复杂高深莫测的问题: 费力的问题指的是人类可以胜任,而且可以将解决方案编写成电脑程序的问题,但这么做却不切实际。 复杂的问题指的是人类可以胜任,但要将这种能力编写成电脑程序却很困难的问题。物体识别是个复杂的问题。人们很擅长识别汽车,但却无法针对这种任务编写有效的规则集。 高深莫测的问题指的是人类无法胜任的任务。在这些领域,人类无法通过标记或组织数据的方法来支撑一个预测引擎。借助神经网络,深度学习非常善于处理这些高深莫测的问题,因为神经网络可以确定需要优化的参数。 机器学习不适合解决没有边界的问题和因果推论问题。 机器学习算法不能超脱其所获取的数据之外来吸收知识。Anastassia Fedyk曾经用1990年代的一个例子生动地强调过这种困难:当时,匹兹堡大学的研究人员评估了一些用于预测肺炎死亡率的机器学习算法。“这些算法建议医生把同时患有哮喘的肺炎患者送回家,认为他们的肺炎死亡率较低。结果发现,提供给算法的数据集没有考虑哮喘患者都已经马上被送往重症监护室,他们之所以病情好转,完全是因为院方的额外关注。”只有在解决独立的问题时,机器学习才能起到效果。 第二,机器学习很不适合解决以因果推论为主的问题。机器学习可以描述数据中的各项元素之间的相关性,但却无法确定它们之间的因果关系。如果未来与过去并不相似,而过去的模式无法反映新的现实,机器学习就不擅长预测这些问题。 5. 表现路径 机器学习未必要100%有效才能发挥价值。从实践角度来看,机器学习引导的解决方案只需要提供与人类近似(最好优于人类)的表现,便可实现自动化并扩大生产规模。因此,在评估机器学习支持的技术的具体表现时,应该从中长期去评估——最好能优于人类的表现——以便解锁价值。 人类的表现水平可能低于我们的想象。根据美国国家高速公路交通安全管理局的统计,美国有94%的车祸都源自人为错误。无人驾驶汽车不需要100%安全便可彰显价值:只需要达到与人类相似或高于人类的水平即可,而美国司机目前的水平是每1亿英里行驶里程死亡1.25人。(当然,在实际情况下,买家对某项技术的信任是其普及的进一步条件——在某些领域,要让人们接受这些技术,还需要达到更高的标准,其中也包括无人驾驶汽车。这一点将在下文讨论。) 6. 合适的数据 要让机器学习创造价值,就需要通过合适的数据对其进行训练。我们会评估一家公司能在多大程度上获得合适的数据。我们会以机器学习的两个数据处理阶段为背景来衡量数据的适用性: 选择:数据可用性;是否存在数据缺口和复制品;数据标记的质量,数据是否存在偏见; 处理:数据碎片化;数据清理需求;数据采样需求;数据转换、分解和聚合需求。 我们还会衡量数据集能否保持价值。如果能用历史数据测试和改进一个算法的各种新版本,数据集就能保持价值。但情况并非总是如此。如果一家聊天机器人公司改进了算法,它提供给用户的提示就将与以往有所不同。如果聊天机器人的提示发生变化,用户回应的内容很可能也会改变。 (责任编辑:本港台直播) |