5月23日AlphaGo2.0版本在人机围棋比赛中以1/4子的微弱优势战胜了柯洁,一方面继续彰显了人工智能的强大,但也让人们对AlphaGo和人工智能有了新的认识。先说出结论,再看分析。 01 在围棋这个项目上AlphaGo目前走在了人类的前面,但并没有完全攻克围棋这项运动。它只是通过深度学习找到了一个比人类认识更优的解,但不是最优解。最优解无法找到,即便用尽地球上所有的资源。从专业的角度来讲,就是用深度学习去逼近了一个强化学习中的价值判断函数,然后再跟蒙特卡洛搜索树结合的方法(具体详解可参看[1],不再重复)。既然人工智能和人类都不能找到最优解,现在说哪一方已经完全彻底的失败还早。 02 人类也是在进步的,我们也不要低估了人类后天的快速(小样本)学习能力,这点AlphaGo基于现在的学习方法还做不到。短期来看人获胜概率小,但长远来看(未来5-10年)人还有机会,因为人也有很强的学习能力,可以从少量跟AlphaGo的对弈的棋局中快速学习。而即便再给AlphaGo1亿副棋谱,再添加一万块GPU,如果还是基于现有的学习体系,它进步的速度也终将放缓,因为新增的棋谱和计算资源相对于2x10171这个搜索空间来说只是沧海一粟。我们对人脑的了解还远不如对围棋的认识,这里面还有很大的未知数。 03 目前人类职业棋手跟AlphaGo的差距也就在一个贴目的水平,没有大家想象的那么大。其实这个贴目的差距(按中国标准7目半),直播,在职业棋手看来,已经是非常大的差距了。很多职业高手,进入官子阶段后发现自己还落后对方7-8目,就会主动投子认输了。很多通过数子来决定胜负的比赛,输赢往往都在1-2目之间(比如柯洁就输给AlphaGo半目)。否则会被其他专业棋手笑话,自己落后那么多都不知道,点空能力太弱了。 要能正真客观、准确的看待这个问题急需要较强的人工智能专业知识,也需要一定的围棋功底。下面先纠正网上认知的一些误区: 误区一:AlphaGo可以让人类顶尖棋手4个子,AlphaGo2.0可以让上一个版本4-5个子。 要消除这个误解,首先要跟大家普及一下围棋知识:在围棋里“让对方两个子”和“赢对方2个子”有着天壤之别。这点对于下围棋的人不用多说,但我今天才意识到,很多吃瓜群众一直以为这就是一回事。难怪网上会流传以上的错误言论。 让对方两个子:在围棋里让2子是说让一方先在棋盘上放上2个棋子(棋子只能放在星位),然后对方才开始走。这两个子在对弈之初的价值巨大,对于专业棋手来讲,每个棋子价值至少在10目以上(这是最保守估计了)。让两子相当于至少先让出去对方20多目的地盘。由于棋盘是有限的,如果不能在后面的比赛中,在有限的空间里赢回这20多目,那就是让子失败了。而且让子数越多,被让方获得的价值不单是线性增长的,因为子力之间会形成配合,获取更大的利益。比如说,壤子,其价值就可能远不止40目了。 赢对方2个子:是指双方下完后,赢的一方比输的一方多出2个子。如果按照吃住对方一个子算两目的方法来算,那2个子只相当于4目。AlphaGo赢了柯洁1/4字,就相当于半目棋子而已。 所以“让对方两个子”和“赢对方2个子”不可同年而语。如果真的有围棋之神存在(既他一定能找到最优解,我们人是没有希望下过他的),一般顶尖专业棋手认为他们跟这个神的差距在让2-3子之间。由于AlphaGo可以被证明不能保证找到最优解,所以他离神还有一定的距离。因此,说AlphaGo可以让人类顶尖棋手4个子,这简直就是天方夜谈。 误区二:AlphaGo也会下出一些明显不好的招数,是因为他自我判断形式占优,而放松了自身的要求。 AlphaGo的搜索策略就是优先对获胜概率比较大的分支进行更多的深度搜索,这个策略在任何时候都不会改变,也不能改变。他不会觉得自己优势了就下出缓手。 (责任编辑:本港台直播) |