对于一款母婴产品,我既要知道营销的生存窗口,即怀孕了几个月,因为孕早期和孕晚期的营销侧重点不一样,刚怀孕肯定是最合适的。也要知道用户本身和产品对应的关系,这位妈妈是新客户,还是曾经用过App但流失了。 营销数据分析中,最关键的环节就是新客户—流失客户这个阶段,一位用户能和产品互动多久,atv,将决定产品的生命力。听起来和留存挺像的,上文提过的生命周期计算公式,就是脱胎于市场营销。 用户生命周期价值 生命周期价值是用户在生命周期内能为企业提供多少收益,它需要涉及财务定义。互联网行业更多提到生命周期,而不是生命周期价值,因为互联网的商业模式没有传统营销的买和卖那么简单明确。 举个例子,微信用户的生命周期价值能否计算?并不能,不论是广点通、游戏或者微信理财,都推导不出一个泛化的模型。但是部分产品,如金融和电商,生命周期价值是可计算的。 以互联网金融举例,某App提供理财和现金贷款两种业务,公司从这两个业务中获得收入通常是一个较稳固的比率,而成本支出平摊每个用户头上也是固定常数。所以利润就变成了用户理财和贷款的金额大小,以及生命周期的长短。这两者都是可估算的。 生命周期价值比生命周期重要,因为公司要活下去,就得赚更多的钱,而不是用户使用时间的长短。更多内容见《浅谈运营的商业逻辑:CAC和CLV》。 客户/用户忠诚指数 忠诚指数是对活跃留存的再量化。活跃仅是产品的使用与否,A用户和B用户都是天天打开App,但是B产生了消费,那么B比A更忠诚。数据往往需要更商业的指标描述用户,消费与否就是一个好维度。 我们可以用一个简化模型表示: t是一个时间窗口,s代表消费次数,代表的距今某段时间内的消费次数。若时间窗口选择月,那么t=1是距今第1个月内的消费次数,t=2是距今第2个月内的消费次数,列举数据如下。
将消费次数代入s/(s+1),对数据进行转换,它的目的是收敛。以忠诚角度看,消费10次和消费100次的差异并不大,都属于很高且难以流失的用户,10/11和100/101的关系,并且有效规避极值。对于消费0次,1次,2次的用户,则对应0,0.5和0.66,在业务上也具备可解释性。
各月份求和得出的指数能反应用户在消费方面的忠诚。图例只是解释,实际应用过程中需要归一化,并且考虑时间权重:越近的消费肯定越忠诚。上述的模型在于简单,适合各类商业模式的早期分析,如金融投资,便可以计算用户每个季度的投资次数。 客户/用户流失指数 流失指数是对流失的再量化,它是忠诚指数的反面。流失率衡量的是全体用户,而为了区分不同用户的精细差异,需要流失指数。在早期,流失指数=1-忠诚指数。 流失指数和忠诚指数的具体定义能根据业务需要调整,比如忠诚按是否消费,流失按是否打开活跃,只要解释能站住脚。 在拥有足够的行为数据后,可以用回归预测流失的概率,输出[0,1]之间的数值,此时流失的概率便是流失指数。 客户/用户价值指数 用户价值指数是衡量历史到当前用户贡献的收益(生命周期价值是整个周期,包括未来),它是精细化运营的前提,不同价值的用户采取不同策略以最大化效果。 用户价值指数的主流计算方式有两种,一种是RMF模型,利用R最近一次消费时间,M总消费金额,F消费频次,将用户划分成多个群体。不同群体即代表了不同的价值指数。
第二种是主成分分析PCA,把多个指标转化为少数几个综合指标(即主成分),其中每个主成分都能够反映原始变量的大部分信息,且所含信息互不重复。 假设有一个旅游攻略网站,怎么界定优质的内容贡献者?用户的文章发布量?文章被点赞数?用户被关注数?文章好评数?文章更新频次?每个指标都挺重要的,主成分分析能囊括上述所有指标,将其加工成两到三个指标(通常是线性相关指标被合并)。这时再加工成价值指数则不难了。 上述各类指数,都是针对用户营销的明细数据。如何应用呢?最经典的是矩阵法,将指标划分出多个象限,如用户价值指数和用户流失指数。 (责任编辑:本港台直播) |