本港台开奖现场直播 j2开奖直播报码现场
当前位置: 新闻频道 > IT新闻 >

wzatv:【j2开奖】专栏 | 从理论到实践,机器人SLAM技术详解(2)

时间:2017-05-18 16:08来源:香港现场开奖 作者:j2开奖直播 点击:
直接表征法类似卫星地图,它是直接使用传感器(一般是图像传感器)构建得到。这种方法的信息冗余度最大,对于数据存储是很大的挑战,同时,机器人

直接表征法类似卫星地图,它是直接使用传感器(一般是图像传感器)构建得到。这种方法的信息冗余度最大,对于数据存储是很大的挑战,同时,机器人要从中提取出有用的数据也要耗费一番周折,因此在实际应用中很少使用。

特征点地图又是另一个极端,虽然数据量少,但是它往往不能反应所在环境的一些必须的信息,比如环境中障碍物的位置。vSLAM 技术中,多采用这种地图来解决机器人定位问题。想让机器人进行自主避障和路径规划,还需要额外配置距离传感器,如激光雷达、超声波来完成。

栅格地图,或者 Occupancy Map(占据地图)恰好介于其中,一方面它能表示空间环境中的很多特征,机器人可以用它来进行路径规划,另一方面,它又不直接记录传感器的原始数据,相对实现了空间和时间消耗的最优。因此,栅格地图是目前机器人所广泛应用的地图存储方式。

思岚科技的 SLAMWARE 系统内部也采用这种地图方式。

wzatv:【j2开奖】专栏 | 从理论到实践,机器人SLAM技术详解

当你打开手机中的导航软件,atv,在选择前往目的地的最佳路线之前,首先要做的动作是什么呢?没错,就是定位。我们要先知道自己在地图中的位置,才可以进行后续的路径规划。

在机器人实时定位问题中,由于通过机器人运动估计得到的机器人位置信息通常具有较大的误差,我们还需要使用测距单元得到的周围环境信息更正机器人的位置。

目前,常见的测距单元包括激光测距、超声波测距以及图像测距三种。其中,凭借激光良好的指向性和高度聚焦性,激光雷达已经成为移动机器人的核心传感器,同时它也是目前最可靠、最稳定的定位技术。

自 1988 年被提出以来,SLAM 的理论研究发展十分迅速。在实际应用时,除配备激光雷达外,还需要机器人具有 IMU(惯性测量单元)、里程计来为激光雷达提供辅助数据,这一过程的运算消耗是巨大的,传统上需要 PC 级别的处理器,这也成为限制 SLAM 广泛应用的瓶颈之一。

那么,实现 SLAM 的过程中,都会遇到哪些坑呢?

SLAM 实现过程中的难点

SLAM 主要解决机器人的实时定位与自动建图问题,那么,在实际应用时,SLAM 究竟是如何实现的呢?在实现过程中有哪些难点?

这是一个完整的 SLAM 和导航系统的主要架构图:

  

wzatv:【j2开奖】专栏 | 从理论到实践,机器人SLAM技术详解

其中,SLAM 核心过程包括 3 个步骤,第一步称为预处理。我们知道,激光雷达和其他雷达设备一样,某一个时刻只能获取它所在位置的环境信息。

这就是我们所说的点云,它只能反映机器人所在环境中的一个部分。第一步预处理就是对激光雷达原始数据进行优化,剔除一些有问题的数据,或者进行滤波。

  

wzatv:【j2开奖】专栏 | 从理论到实践,机器人SLAM技术详解

第二步是匹配,也就是说把当前这一个局部环境的点云数据在已经建立地图上寻找到对应的位置,这个步骤非常关键。

wzatv:【j2开奖】专栏 | 从理论到实践,机器人SLAM技术详解

这个是 ICP 的点云匹配算法,用于实现匹配。说这个过程关键,就是因为它的好坏,直接影响了 SLAM 构建地图的精度。这个过程和我们玩拼图游戏有点类似,就是在已经拼好的画面中找到相似之处,确定新的一个拼图该放在哪里。

在 SLAM 过程中,需要将激光雷达当前采集的点云(红色部分)匹配拼接到原有地图中。

  

wzatv:【j2开奖】专栏 | 从理论到实践,机器人SLAM技术详解

如果不进行匹配过程,所构建的地图可能就乱成一团,变成这样。

  

wzatv:【j2开奖】专栏 | 从理论到实践,机器人SLAM技术详解

在这个部分完毕以后,就进行第三步,地图融合,也就是将这一轮来自激光雷达的新数据拼接到原始地图当中,最终完成地图的更新。

就像这个图一样,这个过程是永远伴随 SLAM 过程的。

  

wzatv:【j2开奖】专栏 | 从理论到实践,机器人SLAM技术详解

(责任编辑:本港台直播)
顶一下
(0)
0%
踩一下
(0)
0%
------分隔线----------------------------
栏目列表
推荐内容