更多数据集。这是应用深度学习方法很重要的一点,通过获取在不同条件下(如光线和阴影过渡时)和更多不同相机的数据,可以进一步提升该模型; 加入循环神经网络(Recurrent Neural Network)。我认为如果结合RNN网络强大的时间信息预测能力,这将是一个非常棒的方法。接下来我将研究递归方法在定位方面的应用,希望能在这方面再创建一种新的车道检测方法; 使用没有或只有一条车道线的道路数据集。因为在郊区或部分公路不会标记车道线,所以这种模型有更强的推广性; 扩展模型,用来检测更多的对象。类比于图像分割,可以添加车辆和行人检测的功能。上述模型只使用了“G”通道,接下来我们可以使用但不限于“R”和“B”通道,这种方法可能会优于常规的图像分割方法。 相关链接该项目的完整程序请查看Github链接: https://github.com/mvirgo/MLND-Capstone 【完】 招聘 量子位正在招募编辑记者、运营、产品等岗位,工作地点在北京中关村。相关细节,请在公众号对话界面,回复:“招聘”。 One More Thing… 今天AI界还有哪些事值得关注?在量子位(QbitAI)公众号对话界面回复“今天”,看我们全网搜罗的AI行业和研究动态。笔芯~ 另外,欢迎加量子位小助手的微信:qbitbot,如果你研究或者从事AI领域,小助手会把你带入量子位的交流群里。 追踪人工智能领域最劲内容 (责任编辑:本港台直播) |