与CPU和GPU相比,TPU的控制单元更小,更容易设计,面积只占了整个冲模的2%,给片上存储器和运算单元留下了更大的空间。而且,TPU的大小只有其他芯片的一半。硅片越小,成本越低,良品率也越高。 而确定性,是单用途带来的另一个优势。CPU和GPU需要考虑各种任务上的性能优化,因此会有越来越复杂的机制,带来的副作用就是这些处理器的行为非常难以预测。 而用TPU,我们能轻易预测运行一个神经网络、得出预测,需要多长时间,开奖,这样,我们能让芯片以吞吐量接近峰值的状态运行,同时严格控制延迟。 以上面提到的MLP0为例,在同样将延迟控制在7毫秒之内的情况下,TPU的吞吐量是CPU和GPU的15到30倍。 △各种处理器上每秒可运行的MLP0预测 下面,是TPU、CPU、GPU在六种神经网络上的性能对比。在CNN1上,TPU性能最为惊人,达到了CPU的71倍。 总结 如上文所述,TPU性能强劲的秘诀,是因为它专注于神经网络推断。这使得量化选择、CISC指令集、矩阵处理器和最小设计都成为可能。 神经网络正推动计算模式的转变,Google预计未来几年中,TPU将成为快速、智能和价格实惠的重要芯片。【完】 招聘 量子位正在招募编辑记者、运营、产品等岗位,工作地点在北京中关村。相关细节,请在公众号对话界面,回复:“招聘”。 One More Thing… 今天AI界还有哪些事值得关注?在量子位(QbitAI)公众号对话界面回复“今天”,看我们全网搜罗的AI行业和研究动态。笔芯~ 另外,欢迎加量子位小助手的微信:qbitbot,如果你研究或者从事AI领域,小助手会把你带入量子位的交流群里。 追踪人工智能领域最劲内容 (责任编辑:本港台直播) |