本港台开奖现场直播 j2开奖直播报码现场
当前位置: 新闻频道 > IT新闻 >

【j2开奖】Google深度揭秘TPU:一文看懂内部原理,以及为何碾压GPU(3)

时间:2017-05-14 06:39来源:118图库 作者:118KJ 点击:
与CPU和GPU相比,TPU的控制单元更小,更容易设计,面积只占了整个冲模的2%,给片上存储器和运算单元留下了更大的空间。而且,TPU的大小只有其他芯片的

  与CPU和GPU相比,TPU的控制单元更小,更容易设计,面积只占了整个冲模的2%,给片上存储器和运算单元留下了更大的空间。而且,TPU的大小只有其他芯片的一半。硅片越小,成本越低,良品率也越高。

  而确定性,是单用途带来的另一个优势。CPU和GPU需要考虑各种任务上的性能优化,因此会有越来越复杂的机制,带来的副作用就是这些处理器的行为非常难以预测。

  而用TPU,我们能轻易预测运行一个神经网络、得出预测,需要多长时间,开奖,这样,我们能让芯片以吞吐量接近峰值的状态运行,同时严格控制延迟。

  以上面提到的MLP0为例,在同样将延迟控制在7毫秒之内的情况下,TPU的吞吐量是CPU和GPU的15到30倍。

【j2开奖】Google深度揭秘TPU:一文看懂内部原理,以及为何碾压GPU

  各种处理器上每秒可运行的MLP0预测

  下面,是TPU、CPU、GPU在六种神经网络上的性能对比。在CNN1上,TPU性能最为惊人,达到了CPU的71倍。

【j2开奖】Google深度揭秘TPU:一文看懂内部原理,以及为何碾压GPU

  总结

  如上文所述,TPU性能强劲的秘诀,是因为它专注于神经网络推断。这使得量化选择、CISC指令集、矩阵处理器和最小设计都成为可能。

  神经网络正推动计算模式的转变,Google预计未来几年中,TPU将成为快速、智能和价格实惠的重要芯片。【完】

  招聘

  量子位正在招募编辑记者、运营、产品等岗位,工作地点在北京中关村。相关细节,请在公众号对话界面,回复:“招聘”。

  One More Thing…

  今天AI界还有哪些事值得关注?在量子位(QbitAI)公众号对话界面回复“今天”,看我们全网搜罗的AI行业和研究动态。笔芯~

  另外,欢迎加量子位小助手的微信:qbitbot,如果你研究或者从事AI领域,小助手会把你带入量子位的交流群里。

  追踪人工智能领域最劲内容

(责任编辑:本港台直播)
顶一下
(0)
0%
踩一下
(0)
0%
------分隔线----------------------------
栏目列表
推荐内容