绝大多数工作当中的许多不受机器自动化影响的任务都属于那些无法充分定义或者编程的。此类任务要求创造力和原创思维、直觉、协调、沟通、同理心以及说服力。换句话说,人类也许不再执行引导巨型卡车铲矿土,或者甚至是初级的数据收集这样简单重复性的工作。但他们会对数据提出问题,帮助框定参数,验证假设,与同伴进行跨部门协作,就结果进行沟通,对客户表示同情等。 在医院,护理助理目前2/3的时间都花在人工收集健康信息上。随着时间转移,这一工作需要去收集病人资料的任务当然会变少,因为传感器当然会做得相当好。但认为病重的病人宁愿要有同理心的机器人而不是护工无疑是狂妄的想法。换句话说,护理助理的工作会变得更加人性化而不是更少。在办公室,数据和分析会告知对员工表现的评价,但经理仍然需要对手下冉冉升起的新星提供悉心教诲以及手把手的指导。人类跟机器的互动会越来越多,但非例程化的任务仍然是人类的范畴。 因为机器巨大的威力可以为人类提供很好的补充,直播,人与机器之间的接触点将继续增加。所以我们无疑仍然需要精通技术,而且在很多情况下仍然需要经过可靠的STEM(科学技术工程数学)培训。优先考虑并不断在我们的社区培育这些技能仍然是最重要的事情。但以为基本的技术培训足以应付将来的经济需要是错误的想法。比方说,生搬硬套的计算机编程已经成为廉价日用品,在全球市场都可以迅速且轻易地购买到。而且这项工作本身也在日益自动化。 在哈佛教育学研究生院,David Deming是一位对认知类职业相对雇佣比例已经观察了30年的经济学家。他发现成功者掌握的不仅仅只有纯粹的数学技能,或者纯粹的软技能(参见软技能越来越硬:缺乏者将被未来淘汰,营销大师Seth Godin:别再把这些叫做“软技能”了),而是二者兼而有之,j2直播,他把这称为是“高度数学化,高度社会化”。自1980年以来,需要很高社交技能的工作已经出现了显著增长,而对数学要求高对社交能力要求低的工作则出现了下降。这部分是因为工作环境变得更加复杂,工人专业化需要交换和分享任务,而软技能可以减少所谓的协作的“交易成本”。在麦肯锡全球研究所那份2016研究报告扮演很大角色的James Manyika说:“就继续专注于综合性系统思维的工作而言人的位置无忧。而人需要的是解决问题的技能,学会学习以及学会适应的能力。” 所以问题就变成了这个:如何才能培养出具有适应性、同理心、从他人角度着想的人类技能?如何才能跟不同的人协作和沟通?如何在这个高度变化的世界里,为2060年我们还想象不到的工作培训好一位大学毕业生?成功以及不断成功的就业机会将会降临在那些既精通技术理解机器,又具备在我们的技术世界上帮助维持人与人交互的软技能的人身上。 克服这一挑战的钥匙也许放在我们最意想不到的地方:在技术拐点来临之际,我们需要在人文科学方面加倍努力。毕竟,这是学生开拓思维的地方,是探索人文、艺术以及社会与自然科学、挑战我们的思想、质疑我们的假设以及改善我们的好奇心的地方。人文科学与技术娴熟并不冲突。它们为我们应用新工具提供了上下文,让我们即便在一个机器变得越来越聪明的世界里也能具备比较优势。 (责任编辑:本港台直播) |