显然,艺术家更愿意将神经网络看成「绘画」的工具。与之相反的是,计算机科学家则致力于设计能够真正自己「创造」艺术的神经网络。我认为就目前在该领域的研究成果来说,atv,神经网络更适合成为一种「创作工具」而不是「创作者」。因为目前的神经网络或多或少都是基于概率模型设计的,也就是说,这些网络都是在给定条件下,通过输入的数据来预测一个输出结果。 不能否认,人也是从过往的经验里来学习新的知识与能力,正如机器学习中的「监督学习」。但是人学习的这一过程则要复杂得多。对前文提到的神经网络来说,训练集仅仅只是「真实的照片」和「绘画作品」,我们希望从中能够找到某种能够将它们两者联系起来的映射关系。然而,除了基于实实在在的场景(也就是所谓「真实的照片」)以外,艺术家更会结合自己的个人体验与经验来进行创作——这些个人的体验与经验是极难被量化成计算机所能理解的数据。 这篇博客同时也从艺术家的角度提供了一些很有趣的观点。在艺术家眼中,自然图像(也就是真实的场景)中的噪音要远比图画这类艺术作品中的噪音多。这一观点其实是和部分计算机科学家的理解相悖的,比如论文《ArtGAN-Artwork Synthesis with Conditional Categorical GANs》。 博客作者也指出目前这种生成类的神经网络存在的一个问题是:生成的图像通常会有很模糊的边缘。因此他不得不使用「混合神经技术」在 Photoshop 中来手动锐化这些边缘。的确,这种附带的模糊效果是很难在这一类神经网络中避免的。对此,论文《Face Aging with Conditional Generative Adversarial Networks》的作者提出可以使用一个训练好的用于识别的神经网络来分别提取原图和生成图像的深层次特征,然后计算二者的 L2 损失来进行优化,从而减弱边缘模糊的效应。尽管如此,这也仅仅只能「改善」输出结果而非彻底解决这一问题。 参考博客:https://artplusmarketing.com/how-artists-can-use-neural-networks-to-make-art-714cdab53953 本文为机器之心原创,转载请联系本公众号获得授权。 ?------------------------------------------------ 加入机器之心(全职记者/实习生):[email protected] 投稿或寻求报道:[email protected] 广告&商务合作:[email protected] (责任编辑:本港台直播) |