本港台开奖现场直播 j2开奖直播报码现场
当前位置: 新闻频道 > IT新闻 >

码报:【j2开奖】一周论文 | 基于知识图谱的问答系统关键技术研究 #01(3)

时间:2017-04-09 16:14来源:118图库 作者:本港台直播 点击:
基于知识图谱的问答系统,需要解决两个核心问题:(1)如何理解问题语义,并用计算机可以接受的形式进行表示(问题的理解和表示);(2)以及如何

基于知识图谱的问答系统,需要解决两个核心问题:(1)如何理解问题语义,并用计算机可以接受的形式进行表示(问题的理解和表示);(2)以及如何将该问题表示关联到知识图谱的结构化查询中(语义关联)。

问题理解和表示:知识图谱中有数以千计的关系,而一种关系可以有数以千计的问法。例如,表 1.1 中的问题 ○a 和问题 ○b 都询问了檀香山市的人口,尽管它们的表达方式大相径庭。对于不同的问题形式,问答系统使用不同的表示方法。这些问题表示必须满足(1)归一具有相同语义的问题;(2)区分不同意图的问题。 所使用的问答语料库最终找到了 2782 种问题意图的约 2700 万种问题形式。所以问题表示形式设计就是一个巨大的挑战。

语义关联:在获取一个问题的表现示之后,系统需要将这一表现示映射为结构化查询。结构化查询主要依赖于知识库中的属性。由于属性和表现模型之间的跨越,寻找这样的匹配并非直接。例如,在表 1.1 中,系统需要知道问题 ○a 与属性 population 有着相同的语义。此外,在 RDF 图中,许多二元关系并不仅仅对应一条边,而是某种复杂的结构:在图 1.1 中,“配偶”关系由 marriage → person → name 的路径表示。对于本文使用的知识库,超过 98% 的关系对应于类似的复杂结构。

第 2 节 研究架构与模块关联

2.1. 研究架构

本文研究架构见图 1.2。依据其理解语义的粒度从小到大,从具体技术到上层应用,主要分为以下五个部分。

码报:【j2开奖】一周论文 | 基于知识图谱的问答系统关键技术研究 #01

图 1.2:研究架构图

1. 实体层:语义社团搜索实体是自然语言的基本单位之一,基于知识图谱的实体语义理解为上层语义计算,特别是问题中的实体语义,提供基本支持。本文研究了面向实体的语义社团搜索模型,特别是从模型的表达性、有效性等方面研究不同社团定义的合理性。其次,语义社团搜索作为语义理解的原子操作,需要保证在大图上的实时回答。为此,本文研究了大图上的高效社团搜索方法,特别是基于大图的局部性的高效搜索方法。

2. 短文本层:动词理解和实体概念化短文本是自然语言的最常见形式之一,起到对实体和更复杂文本单元(如问句)的承接作用。短文本上已经有了句法结构特征和上下文关系。知识图谱的作用,则可以使系统更精确表示句法结构和上下文信息。本文提出了动词模板,用来表示细粒度的动词语义。并且基于动词模板,优化了基于上下文的实体概念化方法。

3. 问题层:问题语义理解和表示问题的表示学习,是计算机理解问题的核心步骤。本文提出了问题的模板表示方法,将问题的实体映射到其对应概念,用以表示问题语义。此外,本文还利用问题模板的思路,解决了复杂问句的解析问题。

4. 问答系统层:问题与知识图谱的语义关联 基于问题的模板表示,需要将其映射为知识图谱的结构化查询,最终实现问答。这一映射主要取决于知识库中的属性。本文提出了基于真实问答语料的学习方法,利用概率图建模问题模板到答案的生成,并进行语义关联的参数估计。同时,本文利用属性扩展,研究知识图谱中的多步属性这一复杂知识表示形式,学习问题模板到复杂知识图谱结构的映射。

5. 应用层:面向应用的领域问答适配由于通用人工智能依然是非常困难的,出于具体应用场景需要,大部分真实应用中的问答系统是面向具体领域的。例如 IBM 的 Watson 专注于医疗和财经领域,亚马逊的 Alexa 专注于智能家庭和零售领域,微软的 Cortana 专注于操作系统助手。为了对问答系统作领域适配,本文有两方面的工作,第一,将开放领域的自然语言模型(例如 POS tagging),适配到具体领域,使得问答系统相关自然语言处理模块在特定领域正常运行。第二,从自然语言文本中,为特定领域进行自动化领域相关的知识抽取。

2.2. 研究系统性

(责任编辑:本港台直播)
顶一下
(0)
0%
踩一下
(0)
0%
------分隔线----------------------------
栏目列表
推荐内容