2016年6月,自动化所中科院分子影像重点实验室田捷研究员团队和广东省人民医院放射科合作,采用新兴的影像组学(Radiomics)方法在结直肠癌淋巴结转移预测研究方面取得了重要进展。和传统CT影像学评估相比,影像组学预测模型将术前淋巴结预测准确率提高了14.8%。 早在2003年,中国就启动了第一个医疗影像大数据研究项目。但因为当时数据很难做到归一化,项目以失败告终。近15年过去了,我们才刚刚正式地有机会来开始做这件事。 ——飞利浦大中华区临床科学部高级总监周振宇博士 人工智能大热的当下,金融、医疗等存量数据巨大的行业,成为了该技术落地应用的首选行业。除了先行一步的金融,近一两年来,BAT、初创公司等也纷纷开始布局人工智能医疗。 而值得一提的是,在日前由智能医疗影像平台初创企业汇医慧影在北京主办的“医疗人工智能前沿峰会”上,雷锋网通过对来自飞利浦、西门子、一线医疗工作者、学界高校、医疗科技创新、英特尔等医疗行业人士的访谈发现,在盘活人工智能医疗这件事上,各界对于智慧医疗、医疗普惠的探索,比我们想象中要早很多;业界内的联合联动,也非其他同样寻求AI创新的行业所能及。 医疗资源分配不均、政策受阻,AI为中国医疗困境带来希望在当前中国的医疗市场中,国家投入巨大,但医疗资源分配矛盾依旧突出。据公开数据显示,庞大的医疗机构体系中,拥有优质医疗资源的医院仅占卫计委医疗总数的0.1%。 大量的病人来自基层,但数量极少的三甲医院门庭若市。事实上,病人对基层的不信任不在于设施,而是人。据统计,目前我国基层医院误诊率较高,医学影像领域误诊次数达到每年5700万次;医院总体而言,肿瘤误诊率达到60%。更不用说早年。 因此,对于国家出台的分级诊疗方案,实施起来也有难度。不管是三甲医院的医生下基层,还是远程医疗,这还是需要优秀医生贡献时间,所以都解决不了根本问题——优秀医生资源缺乏,服务效率不高。 与此同时,英特尔医疗和生命科学集团李亚东称,此外在中国,人口老龄化与慢性病增长的趋势驱动了市场对AI更大的需求。因此,AI 成为医疗创新的必由之路——让产品化人工智能来赋能,让优秀医生的能力可复制。 这是一个蓝海市场,也是一个充满温情的事业。 多年来智慧医疗的最大抵抗力事实上,中国早在1984年10月,原教育部副部长、东南大学校长韦钰院士就创立了东南大学生物科学与医学工程系,该系正是在2006年8月成立的生物科学与医学工程学院的前身。而生物科学与医学工程学院的创立,其科学研究及学生培养方向就是瞄准21世纪主导学科——生命科学与电子信息科学,强调这两个学科的交叉与渗透。 飞利浦大中华区临床科学部高级总监、接受中国最早医工双学士改革教育的周振宇博士向雷锋网讲述他那一代人探索智慧医疗的历程时表示,“生命学工程系,最早是进行医工双学位的培养,学生们都需要先去学工科,然后再学医。在那个时候,我们就想创建这样的影像方面的大数据平台了。” 据了解,在2003年,j2直播,中国启动了第一个医疗影像大数据研究项目,周振宇博士也参与了其中。但在那个年代,项目虽然获得了高达500万人民币的资金支持,但最终还是失败了。因为,算法问题已经成熟,但还存在许多无法克服的挑战:设备成像的质量,数据,以及计算机能力的滞后等。 在今天英伟达、英特尔等半导体厂商的加入下,直播,CPU\GPU\FPGA等的补足让计算处理能力有了长足的进步。但是,如斯坦福大学医学物理部主任、终身教授邢磊指出,数据不集中不规范是目前智能医学发展的最大障碍之一。因为标准、系统兼容性和互通性而导致的数据归一化问题,至今任然存在。这也是为什么,汇医慧影希望打造跨设备互联的医疗影像云平台。 邢磊教授表示,对于医学影像与病例病史等资料的整合,从而做出综合的智能分析决策,现在尚处于非常原始的阶段。 “现在医院对病人进行系统的综合的智能分析决策做得还非常不够,比如今天一名病人的核磁结果来了,就分析一下,但实际上,这名病人也许在十年前也留下了相关的核磁、CT及病例病史等结果,这些历史数据是否能够整合呢?如有了全面的智能分析决策之后,效果会好的多。” 基因数据、影像信息到规范化大数据,是不可断裂的链所以,当数据端的完善成为共识时,如何获取数据?什么样的数据才是智慧医疗实现的原材料呢? 3月28日,IBM与国内互联网医疗平台百洋医药集团签署战略合作协议,旗下百洋智能科技将成为Watson Health(沃森健康)中国地区的战略合作伙伴。 (责任编辑:本港台直播) |