在医疗领域,依赖专业判断的最重要的技能之一就是面对多种不确定因素和不全面的医学证据做出诊疗的能力。但是在癌症的案例中,计算机开始建立庞大的科学数据库,并把这些数据与包含癌症基金数据和临床治疗效果的海量病例相结合。哪个病人不希望自己的治疗方案是建立在最佳医学证据基础上的呢?在这一意义上,是否肿瘤专家的工作已经终结了呢?
医学不是纯科学。医学“艺术和神秘”的本质造就了医师判断力的第二战场——提供咨询。比如关于什么时候不要治疗的建议,关于何时治疗可能比疾病更糟糕的建议,以及对患者从多种疗法中进行选择的指导。其中一些可能会使患者感觉更好,即使它们对疾病的进展没有实际影响。AI 能做到这点吗?我们希望它做到这点吗? 法律呢?你更愿意被法官、陪审团还是计算机认定为有罪或无罪?刑事法院适用的有罪检验是“排除合理性怀疑(beyondreasonable doubt)”。但是对一个人来说是合理的,对另一个人可能是不合理的。而在民事法庭上,“概然性权衡(onthe balance of probabilities)”则更加微妙。 计算机擅长计算概率的平衡。其硬盘可以储存巨大的罪犯数据库;处理器可以算出DNA序列或指纹匹配的几率。我们已经开始留下了广泛的数字证据踪迹,因为我们的行为被记录下来,我们所携带的无线和GPS设备阵列标示着我们的位置信息。与许多证据相关的概率可以互相关联。原理上,可以量化出“排除合理性怀疑”或“概然性权衡”等概念——可以说前者是99%,后者为51%。这些都是计算机在人类判断领域能做的贡献。 责任由谁来负? 说到量刑,你更愿意被法官还是计算机做出量刑?大多数人可能会在心中盘算,那种方式的量刑痛苦最小?根据你的性别、种族和社会及经济状况的不同,结果也可能不同,因为这些因素以及其他一些因素可能会造成人类判刑时的系统偏见。 事实上,在许多情况下,人类都会表现出系统性的偏见。有证据表明,个体法官和医生的行为方式存在着系统性的不同。判决你的法官或治疗你的医生,他们的身份可能会导致显著不同的结果。但是,不仅法官和医生有系统的偏见——刑事司法程序和提供临床护理的各个阶段都存在偏见。因此,被阻止和被搜查的概率,被监禁或被保释的可能性,律师对客户的同情和陪审员对被告的态度,会受到几个因素的影响。有时这些与被告有罪或无罪的关系很微弱。类似的,你的社交环境、你的全科医生、你的护士以及许多其他因素都会系统地影响你的医疗结果。 说到量刑,计算机硬盘可以包含以前完整的量刑记录。然而,机器学习可能会吸收量刑或医疗记录中隐含的全部偏见,并体现在算法上。一个例子是如果在Google上搜索“CEO”,显示的几乎全是白人男性的图像,而且显示的向女性提供的高收入行政职位的广告远远少于男性。 一个解决办法是永远不要把计算机的建议置于人类的判断之上。这将计算机放在了一个顾问的位置上。但如果结果不好,atv,会发生什么?在癌症治疗失败的情况下,拒绝计算机的治疗方案推荐是否会让医生遇到麻烦——而那些遵照了建议的医生,如果结果不好,又会怎样?而且,最终计算机是否会保留最佳意见,因为偏执的人类总是选择忽视计算机的建议?
当涉及到主观判断时,我们会营造一个将专业规范和价值观纳入计算机算法的世界吗?在司法判决中,我们会故意构建一系列偏见。我们可以创造权重规则,以考虑或忽视犯罪分子的苦难童年。判刑可以根据被告的家庭情况加重或减轻——还可以设计为忽略这些情况。简而言之,在某个持有偏见的人看来,通过计算机进行判罚,对于肇事者或受害者的具体情况似乎总表现为同情或者无情。 那么,如果我们要充分利用AI和机器学习,我们就需要制定一些机制来了解算法的运行,特别是通过机器学习在计算机系统中自我演化的算法。我们真的了解AlphaGo是如何在围棋比赛中战胜人类冠军的吗? 让人类为自己的判断负责其实是很难的,部分原因是我们对促成人类判断的认知机制只有最模糊的理解。通过让那些“聪明”的人充任法官,我们在努力做出正确的判断。尽力而为。但是在机器学习方面,答案并不明显。 (责任编辑:本港台直播) |