本港台开奖现场直播 j2开奖直播报码现场
当前位置: 新闻频道 > IT新闻 >

码报:【j2开奖】【干货】深度学习必备:随机梯度下降(SGD)优化算法及可视化(5)

时间:2017-04-04 20:01来源:118图库 作者:www.wzatv.cc 点击:
在验证集上如果连续的多次迭代过程中损失函数不再显著地降低,那么应该提前结束训练,详细参见NIPS 2015 Tutorial slides,或者参见防止过拟合的一些方法

  在验证集上如果连续的多次迭代过程中损失函数不再显著地降低,那么应该提前结束训练,详细参见NIPS 2015 Tutorial slides,或者参见防止过拟合的一些方法。

Gradient noise

  Gradient noise[21]即在每次迭代计算梯度中加上一个高斯分布N(0,σ2t)的随机误差,即

  gt,i=gt,i+N(0,σ2t)

  高斯误差的方差需要进行退火:

  σ2t=η(1+t)γ

  对梯度增加随机误差会增加模型的鲁棒性,即使初始参数值选择地不好,并适合对特别深层次的负责的网络进行训练。其原因在于增加随机噪声会有更多的可能性跳过局部极值点并去寻找一个更好的局部极值点,这种可能性在深层次的网络中更常见。

  总结

  在上文中,对梯度下降算法的三种框架进行了介绍,并且mini-batch梯度下降是使用最广泛的。随后,我们重点介绍了SGD的一些优化方法:Momentum、NAG、Adagrad、Adadelta、RMSprop与Adam,以及一些异步SGD方法。最后,介绍了一些提高SGD性能的其它优化建议,如:训练集随机洗牌与课程学习(shuffling and curriculum learning)、batch normalization、early stopping 与 Gradient noise。

  希望这篇文章能给你提供一些关于如何使用不同的梯度优化算法方面的指导。如果还有更多的优化建议或方法还望大家提出来?或者你使用什么技巧和方法来更好地训练SGD可以一起交流?Thanks。

  本文译文授权转载自CSDN

  由于微信文章字数限制,本文未列出全部参考文献,请戳原文查看。

  原文链接:

  3月27日,新智元开源·生态AI技术峰会暨新智元2017创业大赛颁盛典隆重召开,包括“BAT”在内的中国主流 AI 公司、600多名行业精英齐聚,共同为2017中国人工智能的发展画上了浓墨重彩的一笔。

  文字实录:

  访问以下链接,回顾大会盛况:

阿里云栖社区:

(责任编辑:本港台直播)
顶一下
(0)
0%
踩一下
(0)
0%
------分隔线----------------------------
栏目列表
推荐内容