本港台开奖现场直播 j2开奖直播报码现场
当前位置: 新闻频道 > IT新闻 >

【组图】专访吴甘沙:无人驾驶提高容错率,要先打开深度学习的“黑盒子”?(2)

时间:2017-03-26 19:00来源:118论坛 作者:www.wzatv.cc 点击:
如前文所述,鲁棒性的内涵是系统的容错率。在吴甘沙看来,单个部件出错是必然的,如果有足够的冗余性,它的容错率就会提升,而这是整个系统层面的

  如前文所述,鲁棒性的内涵是系统的容错率。在吴甘沙看来,单个部件出错是必然的,如果有足够的冗余性,它的容错率就会提升,而这是整个系统层面的工作。例如,在传感器、计算器件、电源等方面,都要有足够的冗余。

  此外,对无人驾驶汽车的大量测试,也是从系统层面提升鲁棒性的方法。

  奔驰S级的代量是波音787的梦想客机代量的16倍,对于现在具备人工智能的车,它的随机性和机器学习方面都需要大量测试。

  目前包括谷歌、特斯拉等在内的业界领先的企业都有一个共识,那就是,路测里程达到100亿英里之后,才意味着无人驾驶技术的成熟。

  谷歌的无人驾驶汽车已经积累了不少训练里程,包括 220 万英里的道路测试数据;10 亿英里的模拟训练数据(截至2016年)。而特斯拉也在通过全球出货量部署智能驾驶模块,以获得大量的现实道路数据。

  驭势科技目前也正在通过园区测试、与OEM合作部署无人驾驶技术模块以及借助仿真环境等途径来提升测试数据。

  当然,无人驾驶从来都不是汽车本身的事情,从整个基础层面围绕无人驾驶去重新规划,比如增加V2X(车联网)的应用等基础设施,才能提高无人驾驶技术的鲁棒性。

(责任编辑:本港台直播)
顶一下
(0)
0%
踩一下
(0)
0%
------分隔线----------------------------
栏目列表
推荐内容