本港台开奖现场直播 j2开奖直播报码现场
当前位置: 新闻频道 > IT新闻 >

wzatv:【j2开奖】【最详尽的GAN介绍】王飞跃等:生成式对抗网络 GAN 的研究进展与展望(7)

时间:2017-03-26 03:50来源:118图库 作者:本港台直播 点击:
平行视觉[52] 是 ACP 理论在视觉计算领域的推 广, 其基本框架与体系结构如图 6 所示. 平行视觉结 合计算机图形学、虚拟现实、机器学习、知识自动化 等技

  平行视觉[52] 是 ACP 理论在视觉计算领域的推 广, 其基本框架与体系结构如图 6 所示. 平行视觉结 合计算机图形学、虚拟现实、机器学习、知识自动化 等技术, 利用人工场景、计算实验、平行执行等理论 和方法, 建立复杂环境下视觉感知与理解的理论和 方法体系. 平行视觉利用人工场景来模拟和表示复 杂挑战的实际场景, 使采集和标注大规模多样性数 据集成为可能, 通过计算实验进行视觉算法的设计 与评估, 最后借助平行执行来在线优化视觉系统. 其 中产生虚拟的人工场景便可以采用 GAN 实现, 如 图 5 所示. GAN 能够生成大规模多样性的图像数 据集, 与真实数据集结合起来训练视觉模型, 有助于 提高视觉模型的泛化能力.

wzatv:【j2开奖】【最详尽的GAN介绍】王飞跃等:生成式对抗网络 GAN 的研究进展与展望

  4.3.2 GAN与平行控制

  平行控制[53?55] 是一种反馈控制, ACP 理论 在复杂系统控制领域的具体应用, 其结构如图 7 所 示. 平行控制核心是利用人工系统进行建模和表示,通过计算实验进行分析和评估, 最后以平行执行实 现对复杂系统的控制. 除了人工系统的生成和计算 实验的分析, 平行控制中的人工系统和实际系统平 行执行的过程也利用 GAN 进行模拟, 一方面可以 进行人工系统的预测学习和实际系统的反馈学习,另一方面可以进行控制单元的模拟学习和强化学习.

  4.3.3 GAN 与平行学习

  平行学习[56] 是一种新的机器学习理论框架, 是ACP 理论在学习领域的体现, 其理论框架如图 8 所 示. 平行学习理论框架强调: 使用预测学习解决如何 随时间发展对数据进行探索; 使用集成学习解决如 何在空间分布上对数据进行探索; 使用指示学习解决如何探索数据生成的方向. 平行学习作为机器学 习的一个新型理论框架, 与平行视觉和平行控制关 系密切. GAN 在大数据生成、基于计算实验的预测 学习等方面都可以和平行学习结合发展.

  结论

  本文综述了生成式对抗网络 GAN 的研究进展. GAN 提出后, 立刻受到了人工智能研究者的重视. GAN 的基本思想源自博弈论的二人零和博弈, 由一个生成器和一个判别器构成, 通过对抗学习的方式 来迭代训练, 逼近纳什均衡. GAN 作为一种生成式 模型, 不直接估计数据样本的分布, 而是通过模型学 习来估测其潜在分布并生成同分布的新样本. 这种 从潜在分布生成 “无限” 新样本的能力, 在图像和视 觉计算、语音和语言处理、信息安全等领域具有重 大的应用价值.

  本文还展望了 GAN 的发展趋势, 重点讨论了GAN 与平行智能的关系, 认为 GAN 可以深化平行系统的虚实互动、交互一体的理念, 为 ACP 理论提 供具体和丰富的算法支持. 在平行视觉、平行控制、 平行学习等若干平行系统中, GAN 可以通过生成与 真实数据同分布的数据样本, 来支持平行系统的理 论和应用研究. 因此, GAN 作为一种有效的生成式 模型, 可以融入到平行智能的研究体系.

wzatv:【j2开奖】【最详尽的GAN介绍】王飞跃等:生成式对抗网络 GAN 的研究进展与展望

  Reference 详见论文

  作者介绍

wzatv:【j2开奖】【最详尽的GAN介绍】王飞跃等:生成式对抗网络 GAN 的研究进展与展望

wzatv:【j2开奖】【最详尽的GAN介绍】王飞跃等:生成式对抗网络 GAN 的研究进展与展望

wzatv:【j2开奖】【最详尽的GAN介绍】王飞跃等:生成式对抗网络 GAN 的研究进展与展望

wzatv:【j2开奖】【最详尽的GAN介绍】王飞跃等:生成式对抗网络 GAN 的研究进展与展望

新智元“3·27”AI 技术峰会购票二维码:

(责任编辑:本港台直播)
顶一下
(0)
0%
踩一下
(0)
0%
------分隔线----------------------------
栏目列表
推荐内容