在几何问题中,圆周率显然很重要;但奇怪的是,π也驰骋于几何以外的其它数学领域,它在概率问题中的频繁出现让人们得以通过实验模拟估算它的值。(当然,多学一点数学,你就会发现其实也没那么奇怪了。) 比如鼎鼎有名的布丰投针问题:地板上画一系列间距为2a的平行线,将一根长度为a的针随机投向地面n次,那么针与平行线相交的概率是多少? 1777年,布丰本人给出了解答——相交概率为1/π。很多人甚至依靠此实验推算π 的近似值。1850年,一位叫沃尔夫的人在投掷5000多次后,得到 π 的近似值为3.1596。由投针问题引入的计算 π 的方法,不但因其奇妙而让人叫绝,而且还开创了随机数处理确定性数学问题的先河。
任意两个整数互质的概率是 6 / π^2,基于这一点,英国伯明翰阿斯顿大学的罗伯特?马修斯计算了天空中100颗亮星间的角距离,并把它们转化为100万对随机数字,其中约61%没有公因数。他得到的π值=3.12772,准确率达到了99.6%。 10 派和披萨有一个诡异的联系 ——除了都很好吃之外 这是一个著名的数学笑话:“一个厚度为a,半径为z的披萨的体积是多少?”答案是:“pizza。”这个结果有时被称为披萨第二定理。当然,这只是圆柱体体积公式的一个简单外推罢了。
11 π出现在据说是最美的公式里 但其实 这公式的母体才是最美的 嗯你们知道我要说什么,就是所谓的 欧拉恒等式:e^iπ+1=0.
这个公式的厉害之处在于把数学里最重要的5个数——e,i,π,1和0放在了一个等式里。 但是这个公式本身的意义却很有限。它的几何意义不过是说,如果你旋转了π的弧度,那就正好转过了半个圆……
真正厉害的公式不是欧拉恒等式,而是它的母体——欧拉公式: e^ix = cosx + isinx 欧拉恒等式只是令x=π时得到的一个特例,欧拉公式本身才应该被称为最深刻最美丽的数学公式。比如,利用这个公式可以很容易证明i的i次方是一个实数! 证明么……当然了,留作读者练习之用。(滚走) 12 最后来个实用的:如果你想背π 背到762位就可以了。 这是理查德·费曼的著名冷笑话……因为在π的762位,出现了连续6个9,所以他说,你可以背到762位,然后以“……999999,等等”来收尾。
6个9,不是666666,别背错了。 3.14个AI 传说,只要在3月14日15点9分26秒到3月14日15点9分27秒之间,吃下一个完整的派,妈妈就再也不用担心你的数学成绩了~ 以防万一:。 强行科普一百年
不是什么正经号 (责任编辑:本港台直播) |