本港台开奖现场直播 j2开奖直播报码现场
当前位置: 新闻频道 > IT新闻 >

报码:【j2开奖】专访 | 阿里搜索事业部研究员徐盈辉:剖析阿里背后的强化学习技术(2)

时间:2017-03-15 00:41来源:香港现场开奖 作者:118开奖 点击:
机器之心:能否介绍一下阿里是如何通过持续机器学习和模型优化建立决策引擎,对海量用户行为以及百亿级商品特征进行实时分析,帮助每一个用户迅速

  机器之心:能否介绍一下阿里是如何通过持续机器学习和模型优化建立决策引擎,对海量用户行为以及百亿级商品特征进行实时分析,帮助每一个用户迅速发现宝贝、帮助商家带来适合买家?

  徐盈辉:搜索技术体系演进至今天,基本形成了 offline-nearline-online 三层体系,分工协作保证电商平台既能适应日常平稳流量中实现稳定有效的个性化搜索以及推荐,也能够去满足电商平台对促销活动的技术支持,实现在短时高并发流量下的平台收益最大化。搜索的智能化元素注入到新一代电商搜索引擎的各个环节,通过批量日志下的 offline 建模,到 nearline 下增量数据的 retraining 和 fine tuning 的无缝融合,解决了 NP 环境下的 data shift machine learning 能力问题,基本实现了搜索体系从单纯依靠机器学习模型的高效预测进行流量投放,到从不确定性交互环境中,探索目标的在线学习,预测和决策能力进化。

  2014 年双 11 通过排序特征实时,引入商品实时转化率,实时售罄率模型进入搜索 match 和 rank,让售罄商品额无效曝光大幅减少,并实现了成交转化的大幅提升;2015 年双 11 推出双链路实时计算体系,在特征实时的基础上,引入排序因子的在线学习,预测,以及基于多臂机学习的排序策略决策模型,在预热期和双 11 大幅提升了搜索流量的成交转化效率;2016 年实时学习和决策能力进一步升级,实现了排序因子的在线深度学习,和基于强化学习的排序策略决策模型,从而使得淘宝搜索的智能化进化至新的高度,并在今年的双 11,分桶测试效果表明,成交金额取得了近 20% 的大幅提升。

  

报码:【j2开奖】专访 | 阿里搜索事业部研究员徐盈辉:剖析阿里背后的强化学习技术

  机器之心:技术输出方面,双十一也是一个典型案例,能否简单介绍一下背后这套搜索系统的技术路径是怎样的?强化学习和深度学习在搜索中的应用(算法和模型)带来了哪些提升?都有哪些突破性成果?

  徐盈辉:运用机器学习技术来提升搜索/推荐平台的流量投放效率是目前各大互联网公司的主流技术路线,并仍在随着计算力和数据的规模增长,持续的优化和深入。针对阿里巴巴搜索体系的实时化演进,是什么驱动我们推动搜索的智能化体系从离线建模、在线预测向在线学习和决策方向演进呢?主要有以下三点:

  1. 众所周知,淘宝搜索的具有很强的动态性,宝贝的循环搁置,新卖家加入,卖家新商品的推出,价格的调整,标题的更新,旧商品的下架,换季商品的促销,上下架,降价,宝贝图片的更新,销量的变化,卖家等级的提升,商品竞争程度的提升等,都需要淘宝的商品搜索引擎在第一时间捕捉到变化,并及时反映到索引结构中的相应信息单元,而在最终的排序环节,这些变化也需要及时融入匹配和排序,带来排序的动态调整。

  2. 从 2013 年起,淘宝搜索就进入千人千面的个性化时代,搜索框背后的查询逻辑,已经从基于原始 Query 演变为【Query+user 上下文+location+time】,搜索不仅仅是一个简单根据输入而返回内容的不聪明的「机器」,而是一个能够自动理解,甚至提前猜测用户意图,并能将这种意图准确地体现在返回结果的聪明系统。

  这个系统在面对不同的用户输入相同的搜索语句时,能够根据用户的差异,展现用户最希望看到的结果。正如同人的记忆是有时效性的,我们有理由相信:越近的数据能够越准确地预测下一时刻,如用户的兴趣偏离,商品质量动态变化。在我们的环境下,用户的数据和商品的数据会产生一个联动,既对用户的兴趣进行实时刻画,而用户对商品的偏好累计会造成商品表现的变化,这些变化通过对商品的实时计算,又会反馈给更多的用户。变化是时刻发生的,商品在变化,用户个体在变化,群体、环境在变化,个体和群体的隶属关系也在动态变化。在搜索的个性化体系中合理的捕捉变化,正是实时个性化要去解决的课题。

(责任编辑:本港台直播)
顶一下
(0)
0%
踩一下
(0)
0%
------分隔线----------------------------
栏目列表
推荐内容