来自:《程序员》3月技术板原创投稿。 摘要:本文介绍了大数据引擎Greenplum的架构和部分技术特点,从GPDB基本背景开始,在架构的层面上讲解GPDB系统内部各个模块的概貌,然后围绕GPDB的自身特性,并行执行和运维等技术细节,阐述了为什么选择使用Greenplum作为下一代的查询引擎解决方案。 Greenplum的MPP架构 Greenplum(以下简称GPDB)是一款开源数据仓库。基于开源的PostgreSQL改造,主要用来处理大规模数据分析任务,相比Hadoop,Greenplum更适合做大数据的存储、计算和分析引擎。 GPDB是典型的Master/Slave架构,在Greenplum集群中,存在一个Master节点和多个Segment节点,其中每个节点上可以运行多个数据库。Greenplum采用shared nothing架构(MPP)。典型的Shared Nothing系统会集数据库、内存Cache等存储状态的信息;而不在节点上保存状态的信息。节点之间的信息交互都是通过节点互联网络实现。通过将数据分布到多个节点上来实现规模数据的存储,通过并行查询处理来提高查询性能。每个节点仅查询自己的数据。所得到的结果再经过主节点处理得到最终结果。通过增加节点数目达到系统线性扩展。
图1 GPDB的基本架构 如上图1为GPDB的基本架构,客户端通过网络连接到gpdb,其中Master Host是GP的主节点(客户端的接入点),Segment Host是子节点(连接并提交SQL语句的接口),主节点是不存储用户数据的,子节点存储数据并负责SQL查询,主节点负责相应客户端请求并将请求的SQL语句进行转换,转换之后调度后台的子节点进行查询,并将查询结果返回客户端。 Greenplum Master Master只存储系统元数据,业务数据全部分布在Segments上。其作为整个数据库系统的入口,负责建立与客户端的连接,SQL的解析并形成执行计划,分发任务给Segment实例,并且收集Segment的执行结果。正因为Master不负责计算,所以Master不会成为系统的瓶颈。 Master节点的高可用(图2),类似于Hadoop的NameNode HA,如下图,Standby Master通过synchronization process,保持与Primary Master的catalog和事务日志一致,当Primary Master出现故障时,Standby Master承担Master的全部工作。
图2 Master节点的高可用Segments Greenplum中可以存在多个Segment,Segment主要负责业务数据的存储和存取(图3),用户查询SQL的执行,每个Segment存放一部分用户数据,但是用户不能直接访问Segment,所有对Segment的访问都必须经过Master。进行数据访问时,所有的Segment先并行处理与自己有关的数据,如果需要关联处理其他Segment上的数据,Segment可以通过Interconnect进行数据的传输。Segment节点越多,数据就会打的越散,处理速度就越快。因此与Share All数据库集群不同,通过增加Segment节点服务器的数量,Greenplum的性能会成线性增长。
图3 Segment负责业务数据的存取 每个Segment的数据冗余存放在另一个Segment上,数据实时同步,当Primary Segment失效时,Mirror Segment将自动提供服务,当Primary Segment恢复正常后,可以很方便的使用gprecoverseg -F工具来同步数据。 Interconnect Interconnect是Greenplum架构中的网络层(图4),是GPDB系统的主要组件,默认情况下,使用UDP协议,但是Greenplum会对数据包进行校验,因此可靠性等同于TCP,但是性能上会更好。在使用TCP协议的情况下,Segment的实例不能超过1000,但是使用UDP则没有这个限制。
图4 Greenplum网络层InterconnectGreenplum,新的解决方案 前面介绍了GPDB的基本架构,让读者对GPDB有了初步的了解,下面对GPDB的部分特性描述可以很好的理解为什么选择GPDB作为新的解决方案。 丰富的工具包,j2直播,运维从此不是事儿 (责任编辑:本港台直播) |