若想搞清楚这一点,我们必须要记住,我们只能说计算机可以将猫咪和人类分成两个不同的组群,但计算机本身不能像人类那样处理这种任务。机器学习构架则充分利用抽象概念来完成任务。 对于人类来说,脸上有眼睛;对于计算机来说,它看到的是一张张具有明暗像素的面孔,这些像素构成了我们对线条的想象。深度学习模型的每一层可以让计算机识别相同物体的另一个抽象水平。像素之于线条,就像是 2D 之于 3D 几何。 尽管显得异常笨拙,计算机已经通过了图灵测试 人类与计算机评估世界的方式存在着根本的不同,这对我们创建真正人工智能的尝试构成很大的挑战。图灵测试已经概念化,用以评估我们在人工智能领域取得的进步,但它很大程度上忽略了这种事实。图灵测试是行为主义者测试,旨在评估计算机模仿人类输出的能力。 但是,模仿和概率推理充其量只是智能与意识之谜的一部分。有些人认为,我们在 2014 年成功通过了图灵测试,当时机器让 30 位科学家中的 10 位误以为,在持续 5 分钟的交流中,主角是人而不是键盘。 我应该穿上夹克抵御 AI 寒冬吗? 尽管取得了进步,但科学家和创业者很快就在人工智能的能力上做出了过多的承诺。由此导致的繁荣与萧条周期通常被称为“AI 寒冬”。 我们能用机器学习从事一些令人难以置信的事情,比如对自动驾驶汽车车载屏幕上的物体进行分类,atv,通过卫星图对农作物产量做出估计。漫长的短期记忆有助于机器搞清楚一些事情的时间序列,比如说视频中的情绪分析。强化学习从游戏理念中获取灵感,其中包含一种通过奖励来辅助学习的机制。强化学习正是 Alpha Go 可以战胜围棋世界冠军李世石的利器。 尽管取得了所有这些进步,但机器学习的最大秘密在于,尽管我们往往知道某个问题的信息输入与输出,但我们始终不能确定这个模型是如何从输入过渡到输出的。研究人员将这种挑战称为机器学习的“黑箱问题”。 在变得心灰意冷之前,我们一定要记住,人类大脑本身就是一个“黑箱”。我们并不知道大脑的确切工作机制,不能在每个抽象水平下对其进行分析。如果我要求你分析大脑并搞清楚大脑中的记忆,我会被外人看作疯子。然而,我们不能就此认为,游戏已经结束,相反,游戏才刚刚开始。 翻译:皓岳 WTF is machine learning? (责任编辑:本港台直播) |