风控模型:相比于市场上很多纸上谈兵的风控模型,百度的优势在于搭建了已经应用于实战的风控模型,具体体现在百度金融的主动预警捕捉高危行为。百度金融打通了“人+手机+设备+IP”等关联纬度,基于全网行为进行监测,捕捉高危行为特征,在贷前准入方面就开始排查风险,进行反欺诈识别,生产黑名单,对借款人的行为进行预测。并在贷款后对借款人贷后行为进行跟踪和监测,只要触发预警规则,也会激发提醒。由此可以看出,为百度金融提供技术能力和风控能力的百度云,在风控模型上的能力不可小觑。 与此同时,阿里和腾讯也打起了大数据风控的主意,典型的就是蚂蚁金服、微众银行等也在试图对外进行技术开放。但百度的做法给行业带来了新的启示,以云服务的姿态进行大数据能力的输出,和第三方平台纯粹的大数据风控体系相比,云计算、人工智能、大数据结合的服务模式无疑更具备优势。 从大数据农民到大数据商人 觊觎银行业的不只有BAT,还有形形色色的创业者,毕竟百万亿规模的银行业是一个不可多得的蛋糕。不过,民生银行作为股份制银行将云服务应用到贷后管理和信贷决策领域,却给行业带来了更多值得解读的信号。从云服务的角度来讲,金融云在安全层面又一次刷新了历史,但从大数据的角度来看,BAT正从自给自足的“农民”转型成为大数据“商人”。 其实从2014年开始,BAT就开始加速大数据的应用,比如腾讯的社交大数据、阿里的电商大数据以及百度的搜索数据。不过这个阶段,BAT扮演更多的是大数据“农民”的角色,阿里应用大数据进行用户画像主要在电商层面,百度用大数据来改善广告和营销效果,腾讯用大数据来改善运营等等。云服务的大规模应用为大数据的开放提供了良好的“媒介”,BAT也开始进行角色转变。 但在当前的大数据格局中,除了政府所掌握的数据,BAT等互联网巨头成为大数据资源的垄断者之一。可即便如此,数据孤岛仍是围困BAT在大数据方面想象力的重要原因,正如阿里对于社交数据的缺失,腾讯在生活场景数据方面的不足。同样的困局还存在于银行业,目前央行个人征信记录覆盖率仅为35%,这一数字在某种程度上甚至不及BAT所搭建的信用体系和风控模型,尤其体现在数据的维度上。从这个角度或许也能够解释,为何BAT把大数据风控的潜在客户指向了银行业。 大数据应用的云服务化或是结束数据割裂最行之有效的方式,比如说百度云和民生银行的合作方式在服务的标准化和可复制方面并没有太大的门槛,这就意味着未来将适用于更多的企业,而作为云服务的供应方也将从更多维度获取到数据。 数据显示,目前国内大数据的市场份额已经达到了1000亿人民币,预测到2025年中国的大数据产业会是一万亿元的规模,有着近十倍的增长。数据的流通势必将以指数级的形式加速大数据产业的发展,但在诱人的前景背后也面临着标准化、规范化、安全性、公平性等一系列亟待解决的问题。 结语 30多年前,世界著名未来学家阿尔文· 托夫勒就在《第三次浪潮》一书中预言,大数据极有可能是继农业革命和工业革命后的“第三次浪潮”。或许其中的过程有些曲折,从银行业和大数据风控身上,我们看到了未来的希望。 Alter,互联网观察者,长期致力于对智能硬件、云计算、VR等行业的观察研究。微信公众号:spnews (责任编辑:本港台直播) |