A practical guide to training restricted boltzmann machines (2010), G. Hinton Understanding the difficulty of training deep feedforward neural networks (2010), X. Glorot and Y. Bengio Why does unsupervised pre-training help deep learning (2010), D. Erhan et al Recurrent neural network based language model (2010), T. Mikolov et al. Learning deep architectures for AI (2009), Y. Bengio. Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations (2009), H. Lee et al. Greedy layer-wise training of deep networks (2007), Y. Bengio et al Reducing the dimensionality of data with neural networks, G. Hinton and R. Salakhutdinov A fast learning algorithm for deep belief nets (2006), G. Hinton et al. Gradient-based learning applied to document recognition (1998), Y. LeCun et al Long short-term memory (1997), S. Hochreiter and J. Schmidhuber. HW/SW/数据集 OpenAI gym (2016), G. Brockman et al TensorFlow: Large-scale machine learning on heterogeneous distributed systems (2016), M. Abadi et al. Theano: A Python framework for fast computation of mathematical expressions, R. Al-Rfou et al. MatConvNet: Convolutional neural networks for matlab (2015), A. Vedaldi and K. Lenc Imagenet large scale visual recognition challenge (2015), O. Russakovsky et al Caffe: Convolutional architecture for fast feature embedding (2014), Y. Jia et al 书籍/调查/概述 Deep learning (Book, 2016), Goodfellow et al. LSTM: A search space odyssey (2016), K. Greff et al. Deep learning (2015), Y. LeCun, Y. Bengio and G. Hinton Deep learning in neural networks: An overview (2015), J. Schmidhuber Representation learning: A review and new perspectives (2013), Y. Bengio et al. ©本文为机器之心编译,转载请联系本公众号获得授权。 ?------------------------------------------------ 加入机器之心(全职记者/实习生):[email protected] 投稿或寻求报道:[email protected] 广告&商务合作:[email protected] (责任编辑:本港台直播) |