最让人印象深刻改进发生在将 LSTM 应用于翻译领域。正像 Lukasz 所描述的那样,在学校里,我们逐词地学习外国语言。但是如果我们不用这种方式来学,我们就是听人们用那种需要交流,看上去好像也可以。实际上,幼儿们学习就是采用这种方式,这实际上就是神经网络学习的方式。在这种情况下,训练数据的大小和数量是问题的关键。 翻译的性能由 BLEU 分数来衡量,分值越高性能越好。在过去的两年中,分值从 20.7 提升到了 26.0。Lukasz 的模型大小似乎是决定因素。 在早些年(两年以前),经过训练的网络能够达到「人工系统」(也就是能逐个短语进行转化的短语系统)的水平,并且把它做的越来越大,但却始终达不到比较好的效果。通过比较 PBMT(一种旧的标准翻译模型)和 GNMT(采用了 LSTM 的新模型)的结果你会发现,同样是翻译一个德语句子,新模型的结果很明显更清晰更能让人理解。 这样的结果说明翻译过程不再是非要人工参与的工作,而可以变成仅仅需要一个大的神经网络和很多次训练而已。正如 Lukasz 所说,该理论对于许多自然语言处理任务都适用。 不过它究竟有多好呢?我们能考评它吗?我们请人对谷歌翻译最新发布的神经网络的翻译结果进行评价,评价的分值从 0 到 6,其中 0 分意味着翻译得无厘头,6 分意味着是完美的翻译。而且,为了对新旧系统进行比较,我们请人工的翻译(母语是该语言但不是专业的语言学家)也加入这场比赛,并且也让人们去评分。下一张幻灯片显示了这三种翻译系统的评分结果。
结果显示新的系统有了巨大的改进,而且在某些情况下(比如英语到西班牙语的翻译)几乎和人类的翻译者一样好。通过研究发现,更大的数据库能产生更好的结果。 LSTM 的局限 但是,序列到序列 LSTM 仍然有一些问题待解决。Lukasz 列出了其中的两个: 1. 速度的限制 这些模型都很大。鉴于对数据库大小的依赖,牵扯到相当大的计算量,在这种情况下,处理速度是个大问题。为了缩短处理时间,TPU 在帮助研究人员开展这种翻译的时候是一个很重要的硬件选择。 除此之外,翻译的过程太循序渐进了。即使计算的速度非常快,仍然要一个词一个词地来。即使是一个小任务,处理时间也很慢。为了解决这一问题,新的并行模型(Neural GPU, ByteNet)也许期望能帮助解决这个问题。 2. 需要很多数据 序列到序列 LSTM 需要很多数据。为了解决这个问题,提出了基于注意力和其他能增加数据效率的新架构。其他一些方法可以被用于进行规则化,比如 dropout、信任惩罚(confidence penalty)以及层标准化。 总结 深度学习极大地改变了自然语言处理领域。序列到序列的 LSTM 在很多自然语言处理任务上取得了业界最好的成绩。Google 翻译将 LSTM 用于产品中,获得了翻译质量的巨大提高。但是,新的模型也带来了一些 LSTM 的问题,特别是在速度与对大量数据的依赖上。 ©本文为机器之心原创,转载请联系本公众号获得授权。 ?------------------------------------------------ 加入机器之心(全职记者/实习生):[email protected] 投稿或寻求报道:[email protected] 广告&商务合作:[email protected] (责任编辑:本港台直播) |