在神经网络和深度学习技术得到如此大的发展之后,我们也开始把焦点转向其它一些视觉领域,比如视频,我们在图片识别中学习到的东西能否复制到视频中去,能否让真实世界从中获益。 我的实验室和谷歌的团队合作,把1百万YouTube上500种运动相关的视频都抓取出来,它们分别属于不同的运动类别,我们希望有一天这样的技术能够帮助我们去管理、索引和搜索大量的视频和图片,能够在一个大数据的库存中进行图片和视频的搜索。 最近我们和Facebook进行了合作,进一步扩展了我们工作的范围,不仅仅能够让机器识别出视频中运动的类型,而且可以看看单个队员做了哪些事情。在NBA的篮球视频中,机器可以追踪每个队员在重要事件中(的表现),譬如三分球,罚球,可以看到队员在其中的表现。 我们拿了一些医院的安检视频,通过深度传感器的视频来进行分析应用,通过这样可以识别出人类的肢体活动,看看他们在环境下的行为是安全的还是危险的。 另外一项工作中,我们和欧洲一个火车站进行了合作,将成百上千个传感器安装在公共空间,利用这些计算机的传感器来追踪每个乘客的行动,有非常多的乘客每天、每周、每年在火车站穿梭,通过这样一种监测可以帮助优化火车站的空间,调整火车发车时段。 最近我们利用了深度学习和卷积神经网络、递归神经网络让机器学习如何预测人类行为的轨迹,这项工作的有趣之处在于能够把我们前边所讨论的问题结合在一起,这样,算法不仅有IQ——可以识别出人,而且它也有EQ,有情商——可以预测人的社会行为,譬如说机器人的行为:机器人不应该干扰人的行为,或者是机器人在空间行走时不能打破东西。 我们利用所有这些技术和现实中的情况进行合作,现在我们和斯坦福医院合作,部署相关技术,可以提高他们工作流程的绩效、洗手的习惯,在老人的家庭中也可以对他们进行类似的监测。 从技术从业者的视角看到计算机视觉算法的发展,真的让我感到特别兴奋,它能够帮助我们解决现实世界的问题。 这是一个技术从业者的视角。 从教育者和母亲的视角:AI需要多样化 5亿年前,动物和视觉面临的挑战是存活下来,而现在机器视觉和AI所面临的挑战就是让人类能够繁荣,永远持续下去。作为技术从业者我们要问,AI是否会成为一种摧毁力?还是能给我们带来更好的世界? 我一直在思考这个问题,已经思考很久了,最近我突然顿悟,AI的世界是位于那些创造、开发和使用AI的人的手中。 人工智能AI会改变世界,但这里真正的问题是,谁会改变AI。 大家都知道,世界各地都是缺乏多样性的,包括美国的硅谷,中国、欧洲,还有很多其它区域都缺乏多样性,在美国学术界只有25%的计算机专业人士是女性,不到15%的美国领先工程学校的教职员工是女性,对于少数族裔来说,女性的代表就更少了,产业界也面临着同样的情况。这里不仅涉及到工作场所文化的问题,实际上这个问题也是经济和公共财产的问题。 几个月前我受邀美国白宫讨论了在AI中多样性的必要性,我指出有三个理由使我们必须要提高AI的多样性。 第一个就是涉及到经济和劳动力的原因:AI人工智能是一个日益增长的技术,会影响到每个人,我们需要更多人能开发出更好的技术; (责任编辑:本港台直播) |