本港台开奖现场直播 j2开奖直播报码现场
当前位置: 新闻频道 > IT新闻 >

【j2开奖】重磅 | DeepMind官方确认Master身份:全面回顾AlphaGo的再度出山之旅(2)

时间:2017-01-05 04:01来源:668论坛 作者:本港台直播 点击:
AlphaGo 从高调宣战开始到 3 月底战胜李世乭,短短 2 个多月内已经博取了无数的眼球。如今再次出现了一个 Master,它是人?是 AI?还是二者的结合?业内猜

AlphaGo 从高调宣战开始到 3 月底战胜李世乭,短短 2 个多月内已经博取了无数的眼球。如今再次出现了一个 Master,它是人?是 AI?还是二者的结合?业内猜疑不断。

外行看热闹,内行看门道。在下棋这件事上我们可能看的是热闹(小编着实不懂棋的套路),但下围棋的人工智能系统我们曾了解过。

在中,atv直播,曾详细地介绍了 AlphaGo 系统当时所采用的技术:

首先 DeepMind 使用了如今火热的深度学习技术,同时还加上了另一种模拟技术来对潜在的步法进行建模。深度学习需要对一个大型的神经网络进行训练,使其对数据中的模式做出反应。

AlphaGo 的关键在于使用的深度神经网络,而且 DeepMind 在 AlphaGo 中使用了两种不同的神经网络:第一种叫做策略网络(policy network),用来预测下一步;第二种叫做价值网络(value network),用来预测棋盘上不同的分布会带来什么不同的结果。

AlphaGo 使用这两种网络的方法是把非常复杂的搜索树减少到可操作的规模。所以,它并不是在每一步都要考虑几百种步数,而只考虑政策网络提供的几十种最有前景的步法,价值网络的作用是减少搜索的深度,所以,它的搜索深度并不是特别深,它并不是一下子搜索出直达比赛末尾的 300 多步,而是搜索更少的步数,比如 20 多步,并评估这些位置,而不是一路评估到底,看谁最终能赢。搜索并不是靠蛮力,而是与某种与想象力很相似的东西。

  

【j2开奖】重磅 | DeepMind官方确认Master身份:全面回顾AlphaGo的再度出山之旅

中写道,「最激动人心的莫过于 AlphaGo 博弈过程中所呈现出来的创造力,有时,它的棋招甚至挑战了古老的围棋智慧。围棋,这一古往今来最富深谋远虑的游戏之一,AlphaGO 可以识别并分享其中洞见。」

就像首位和 AlphaGo 对战的专业选手时表示:「AlphaGo 可能开辟出另外一种围棋的美,是我们想象不到的。」

如果观看了 AlphaGo 和李世乭的对弈,你或许不会对坐在李世乭对面的这位感到陌生。他就是 AlphaGo 的核心作者之一 Aja Huang(黄士杰),而这次代「Master」执子的也是黄士杰博士。值得注意的是,黄士杰还是 DeepMind 中唯一一位围棋高手(业余围棋 6 段),从他的硕博论文《计算机围棋打劫的策略》和《应用于计算机围棋之蒙地卡罗树搜寻法的新启发式算法》便可以看出他对围棋的热爱。

2011 年毕业于台湾师范大学计算机信息工程专业博士班的黄世杰在 2012 年便加入了 DeepMind 团队,也是该团队的早期核心成员之一。

在校期间,黄士杰的导师是曾研发 Crazy Stone 的 Rémi Coulom,而 Crazy Stone 正式在 AlphaGo 横空出世前最有名的围棋软件之一。

黄士杰的导师此前在接受媒体报道时曾透露,黄士杰读硕士时就锁定围棋为他的研究课题,为了写程序,黄士杰有时在实验室一呆就是 16 小时,并将他开发的围棋程序以其老婆的英文名「Erica」命名。

下面是黄士杰的论文引用情况。凭借发表于 Nature 的论文《Mastering the game of Go with deep neural networks and tree search》和另一篇论文《Move Evaluation in Go Using Deep Convolutional Neural Networks》的高引用量,开奖,黄士杰仅凭 4 篇论文就在短短两年时间内获得大约 388 到 851 之间的引用。

  

【j2开奖】重磅 | DeepMind官方确认Master身份:全面回顾AlphaGo的再度出山之旅

  ©本文由机器之心原创,转载请联系本公众号获得授权

  ?------------------------------------------------

加入机器之心(全职记者/实习生):[email protected]

投稿或寻求报道:[email protected]

广告&商务合作:[email protected]

(责任编辑:本港台直播)
顶一下
(0)
0%
踩一下
(0)
0%
------分隔线----------------------------
栏目列表
推荐内容