蒲慕明:这可能与神经科学的发展是相呼应的。在神经科学领域,开奖,感官知觉取得了非常大的进步,但是,在更高级别的认知上,我们现在所了解的依然很少,比如语言和决策。 曾毅:我们看到DeepMind 的算法在深度强化学习上取得了很明显的进步。但是,其中也有一些问题。 尽管机器可以通过和环境交互获得反馈,但是这个程序不能把他们所学到的东西从一个游戏迁移到另一个。每次遇到新游戏,它必须重头开始。但是人类不是这样的,人类可以把一个任务上所学到的知识迁移到新的无关联的任务。这是人类大脑的高明之处。 查红彬:当我们提到无监督学习,概念上应该有所转变。我们总强调训练的效率和机器学习所花的时间。事实上,学习不是效率的问题而是和环境交互的问题。效率和可塑性是完全不同的另一种挑战,需要完全不同的解决方案。 曾毅:我认为人工智能的圣杯(Holy Grail)是开发通用智能系统,这种系统由人脑的机制启发,并且表现得像人类。真正的人类水平的智能系统应当可以处理环境信息,定义问题,然后自己找到解决方案。但是,真正的困难不仅是那些具有挑战性的更高级别的认知难题。真正的难点在所谓的莫拉维克悖论(Moravec‘s paradox)中得到了很好的阐释:正如Hans Moravec所说,“让计算机在智能测试或者下棋方面展现成人级别的水准,相对简单。但是让它们掌握一岁孩子的认知和迁移的技能,却十分困难甚至不可能。” 中国人工智能的黄金时代 蒲慕明:中国在人工智能领域做了什么?需要什么样政策是支持其发展? 谭铁牛:在中国,这是神经科学和人工智能的黄金时代。中国政府在非常认真地对待这件事。习近平主席多次提到“中国大脑项目”(China Brain Project)的重要性,这是未来十年国家最重大的科学项目之一。这是前所未有的。 曾毅:确实。政府在不同层面给予了很多支持。另外,著名的国家基金和几个自治市都有开展研究和发展人工智能的项目。例如北京有一个脑启发计算项目,涉及了几个中科院研究所,北京大学,清华大学等等。我们的产业伙伴和我们的机构(中科院自动化研究所)也成立了一个10亿人民币的专用风险基金,用于人工智能和机器人的发展。 蒲慕明:好像很多大学和机构都有人工智能项目。它们研究的关注点有什么区别? 查红彬:大学和研究所的战略计划并没有太大的区别,它们经常合作一起完成重大国家项目,不同的研究团队会分别关注模式识别、机器人硬件等领域。中国的研究者很关注西方国家的发展。一旦出现一个有前景的方向,每个人都会想加入。 蒲慕明:中科院计算研究所取得了令人振奋的进步。您能简单概括一下是什么样的进步吗? 陈云霁:我们研究所主要关注硬件发展。一个关键的成果是发展前沿芯片处理人工神经网络。20世纪80年代,人们在开发这样的硬件的时候,模拟的神经细胞和突触的规模非常小。通过虚拟化计算技术,现在我们研发出的处理器虽然很小,但是可以在神经网络中模拟不限数量的神经系统和突触。 蒲慕明:在中科院自动化研究所呢?您觉得有什么进展? 曾毅:脑启发智能是我们研究所的关注点。我们的长期目标是解密人类智能的规律和机制,以开发有通用智能的脑启发智能。最近一个里程碑式的突破是并行脑模拟器(Parallel Brain Simulator),它初步尝试在多层次——包括从原子、细胞神经系统、不同复杂度的神经环路、脑区域,到认知行为——来模拟认知大脑。我们已经证明当某些神经规律引入的时候——例如神经细胞的动态分配,突触的形成和消除,兴奋神经细胞和压抑神经细胞的适当比例——这个强化的神经网络精确度得到显著提高。 蒲慕明:这很有意思。它可以让你做什么呢? (责任编辑:本港台直播) |