本港台开奖现场直播 j2开奖直播报码现场
当前位置: 新闻频道 > IT新闻 >

码报:【组图】LightRNN:深度学习之以小见大(3)

时间:2016-12-28 07:14来源:报码现场 作者:开奖直播现场 点击:
其次,因为 LightRNN极 大地压缩了模型的大小,它对并行机器学习也非常有用。考虑用多 GPU 分布式训练一个语言模型,标准 RNN 的模型大小为数 GB ,这样不

其次,因为LightRNN极大地压缩了模型的大小,它对并行机器学习也非常有用。考虑用多GPU分布式训练一个语言模型,标准RNN的模型大小为数GB,这样不同机器之间的模型同步就非常耗时,使通讯时间超过计算时间而成为瓶颈;相比之下LightRNN的模型大小仅为几十MB,非常容易在机器之间传输,通讯代价非常小,从而大大提高并行训练的效率。

第三,考虑到功耗和可定制性,现在很多公司都尝试在FPGA上开发深度学习算法和平台。由于FPGA的内存较小(相对于GPU而言),很多深度学习算法很难在FPGA上实现。LightRNN因为其模型的极度紧致,为FPGA上的RNN的实现提供一种可能。

第四,现在移动设备在人们的日常生活中扮演着不可或缺的角色。尽管深度学习日益普及,但是在移动设备上的应用始终非常受限,例如当前不可能在手机输入法里使用一个2-4GB大小的语言模型,尽管它的准确度可能很高。LightRNN的模型大小仅为几十MB,非常适合在移动设备上使用,因此LightRNN为深度学习在移动场景中的普及提供了一个可行的方案。

如前文所述,RNN乃是序列建模的绝招,适合非常多的应用,包括语言建模、机器翻译、聊天机器人、看图说话(Image captioning)、图像生成、语音识别等等。相应的,LightRNN通过以小见大、返璞归真,推动深度学习在在这些问题、场景里的实用化。我们相信,LightRNN会进一步提升深度学习在AI的江湖地位,并促进AI普及化进程(Democratizing AI,参见“),而不是让AI或深度学习发展成为大型帮派的特权。

更多详细信息参见我们NIPS 2016 论文。

  Xiang Li, Tao Qin, Jian Yang, and Tie-Yan Liu, LightRNN: Memory and Computation-Efficient Recurrent Neural Networks, NIPS 2016.

  作者简介

  

码报:【j2开奖】LightRNN:深度学习之以小见大

  秦涛

秦涛博士,现任微软亚洲研究院主管研究员。他和他的小组的研究领域是机器学习和人工智能,研究重点是深度学习和强化学习的算法设计、理论分析及在实际问题中的应用。他在国际顶级会议和期刊上发表学术论文80余篇,曾任SIGIR、ACML、AAMAS领域主席,担任多个国际学术大会程序委员会成员,包括ICML、NIPS、KDD、IJCAI、AAAI、WSDM、EC、SIGIR、AAMAS、WINE,曾任多个国际学术研讨会联合主席。他是IEEE、ACM会员,中国科学技术大学兼职教授和博士生导师。

  你也许还想看:

感谢你关注“微软研究院AI头条”,我们期待你的留言和投稿,共建交流平台。来稿请寄:[email protected]

  微软小冰进驻微软研究院微信啦!快去主页和她聊聊天吧。

(责任编辑:本港台直播)
顶一下
(0)
0%
踩一下
(0)
0%
------分隔线----------------------------
栏目列表
推荐内容