本港台开奖现场直播 j2开奖直播报码现场
当前位置: 新闻频道 > IT新闻 >

wzatv:【重磅】2016 AI 巨头开源 IP 超级盘点,Top 50 最常用深度学习库(3)

时间:2016-12-25 21:08来源:本港台直播 作者:开奖直播现场 点击:
创立于 2015 年底的非盈利机构 OpenAI 的成立打破了谷歌、Facebook 等 巨头 霸占 AI 领域的格局,但其创始人、特斯拉CEO马斯克多次发表人工智能威胁论。马斯

  创立于 2015 年底的非盈利机构 OpenAI 的成立打破了谷歌、Facebook 等巨头霸占 AI 领域的格局,但其创始人、特斯拉CEO马斯克多次发表人工智能威胁论。马斯克创立 OpenAI 目的何在?2016年 5 月 4日,OpenAI 发布了人工智能研究工具集 OpenAI Gym,用于研发和比较强化学习算法,分析 OpenAI Gym 或可找出马斯克的真正动机。

  2.

  2016 年 8 月 30 日,OpenAI 研究员在博客发文,结合实例介绍了 OpenAI 进行深度学习研究时采用的基础设施配置,并且提供了相关开源代码。文章激起了很多反响,相对于软硬件开源,OpenAI 从另一个侧面,对深度学习模型的实际部署提供了帮助。

  3.

  2016年12月 4日,在今年 NIPS 大会召开的前一晚,OpenAI 发布了 Universe,用于训练解决通用问题 AI 的基础架构。据悉,这是一个能在几乎所有环境中衡量和训练 AI 通用智能水平的开源平台,目标是让智能体能像人一样使用计算机。目前,Universe 已经有1000种训练环境,由微软、英伟达等公司参与建设。有了 Universe,任何程序都能被接入到 OpenAI Gym 的环境中。很快,OpenAI 还推出了 Mini World of Bits(MiniWoB),这个与 OpenAI Universe 配套的环境基准可以测试代理与常见网页浏览器元素的交互能力,比如按钮、文本框、滑块。

  微软开源:CNTK 升级版

  根据 Github 2016 年度的《Octoverse 观察报告》,微软不仅是拥有开源项目最多的公司,也是贡献人数最多的公司。

  在人工智能方面,微软的开源项目有很多,包括 CNTK计算网络工具包、DMTK分布式机器学习工具包,Send2vec语义相似映射器, 以及 CodaLab 研究平台(基于Web的开源平台,旨在通过其在线社区帮助解决数据导向的许多常见问题,从而促进机器学习和高性能计算的研究领域的发展)。

  2016 年 10 月 27日,微软开源深度学习认知工具包 CNTK 升级版,其中最瞩目的功能是增加了 Python 绑定,支持增强学习。新版的 CNTK 性能大幅提升,尤其是在多台机器上处理较大数据集的情况下能高速运行,这种类型的大规模部署对于多GPU上的深度学习是不可或缺的,也是开发消费产品和专业产品的必需。

  微软研究人员表示,在多服务器间运行的能力是一大进步。CNTK 升级版还包含了一些算法,用于将大规模数据处理的计算消耗降到最低。

  百度

  1.

  2016 年 1月 15 日,百度公布了代码 Warp-CTC,能够让 AI 软件运行得更高效。说 Warp-CTC 知道的人可能还少,百度语音识别系统 Deep Speech 2 就是用它搭建的。百度位于硅谷的 AI 实验室主管 Adam Coates 在接受 Re-Work 采访时表示,他们在构建深度语音端对端系统的过程中发明了Warp-CTC 方法,进而使用 CTC 提高模型的可伸缩性。“由于没有相似的工具,我们决定将其分享给人们。它是一款很实用的工具,可以用到现有的AI框架中。现在有很多深度学习的开源软件,但是之前用于训练序列数据的端对端网络一直很慢。我们在Warp-CTC上的投入是对“我们坚信深度学习与高性能计算技术(HPC)的结合会有巨大潜力”的一种证明。”

  2.

  2016 年 8 月 31日,百度宣布开源深度学习平台 PaddlePaddle。实际上,百度深度学习实验室在几年前就投入 PaddlePaddle 的开发,业内对这个云端托管的分布式深度学习平台赞誉有加:代码简洁、设计干净,没有太多抽象……PaddlePaddle 对于序列输入、稀疏输入和大规模数据的模型训练有着良好的支持,支持GPU运算,支持数据并行和模型并行,仅需少量代码就能训练深度学习模型,大大降低了用户使用深度学习技术的成本。

  3.

  2016 年 9月,百度发表论文,开源 DeepBench 基准测试,AI研究者和芯片制造商可以用它测试不同的芯片运行软件时的性能,尤其是哪款硬件加速深度学习性能最好。目前 DeepBench 只能测试深度学习的训练模型,能提供在三种 Nvidia GPU和一种 Intel Xeon Phi 处理器的基准化测试结果,未来还可能测试用于图像和语音识别之类任务的“推理”模型。百度希望 DeepBench 能促进特定任务深度学习加速器的研发,“GPU显然不是终点,我们希望这能鼓励竞争”。

  GitHub 最受欢迎的深度学习项目

(责任编辑:本港台直播)
顶一下
(0)
0%
踩一下
(0)
0%
------分隔线----------------------------
栏目列表
推荐内容