本港台开奖现场直播 j2开奖直播报码现场
当前位置: 新闻频道 > IT新闻 >

【j2开奖】演讲 | 刘铁岩:对偶学习推动人工智能的新浪潮(2)

时间:2016-12-24 19:46来源:668论坛 作者:118KJ 点击:
了解了深度学习和增强学习的弱点以后,我们不禁要问:有没有一种新的学习范式可以克服他们的弱点?能否可以不依赖于那么多有标签的数据,能否不需

了解了深度学习和增强学习的弱点以后,我们不禁要问:有没有一种新的学习范式可以克服他们的弱点?能否可以不依赖于那么多有标签的数据,能否不需要跟真实环境做那么多次交互,就可以学到有效的模型?为了回答这个问题,我们首先来对现有的人工智能任务做一个仔细的分析。

  

【j2开奖】演讲 | 刘铁岩:对偶学习推动人工智能的新浪潮

通过分析,我们发现了一个非常重要的现象:现实中,有意义、有实用价值的人工智能任务,往往是成对出现的。比如在做机器翻译的时候,我们关心从英语翻译到汉语,我们同样也关心从汉语翻译回英语。再比如,在语音领域,我们既关心语音识别的问题,也关心语音合成的问题(TTS)。图像领域,我们既关心图像识别,也关心图像生成。类似这样的对偶任务还有很多,比如在对话引擎、搜索引擎等场景中都有对偶任务。这种现象给了我们什么启示呢?

第一点,由于存在特殊的对偶结构,两个任务可以互相提供反馈信息,而这些反馈信息可以用来训练深度学习模型。也就是说,即便没有人为标注的数据,有了对偶结构,我们也可以做深度学习了。第二,这两个对偶任务,可以互相充当对方的环境,这样我们就不必跟真实的环境做交互,这两个对偶任务之间的交互就可以产生有效的反馈信号了。总而言之,如果我们能充分地利用对偶结构,就有望解决刚才提到的深度学习和增强学习的瓶颈——训练数据从哪里来、和环境的交互怎么持续进行下去。

基于以上的思考,我们提出了一个新的学习范式,叫做对偶学习。它的思路非常简单。我们假设学习过程中有两个智能体,其中一个智能体从事的是原任务,就是从 X 到 Y 的学习任务;而另外一个智能体从事的是对偶任务,也就是从 Y 到 X 的学习任务。假如我们把 X 用第一个智能体的模型 F 映射成 Y,再利用第二个智能体的模型 G 把它反映射成 X’。通过比较 X 和 X'我们其实就可以获得非常有用的反馈信号。

  

【j2开奖】演讲 | 刘铁岩:对偶学习推动人工智能的新浪潮

其实这个做法在刚才孙茂松老师的演讲中已经提到过,有人曾经用这种翻过去再翻回来的方式判断机器翻译模型的好坏。如果 X 和 X'的差异很大,就说明这个翻译系统不靠谱,说明模型 F 和 G 至少有一个不好;如果 X 和 X'很接近,就给了我们一个利好的消息,就是这两个模型都不错。除了比较 X 和 X'的差异,其实还有很多其他的反馈信息可以被利用。下面我们以机器翻译为例,做个详细的说明。

  

【j2开奖】演讲 | 刘铁岩:对偶学习推动人工智能的新浪潮

假设我们有一个英文的句子 X,通过翻译模型 F 的作用,得到一个中文句子 Y。那么 Y 作为一个中文句子是不是符合语法,是不是顺畅,X 到 Y 之间的关系是否和英汉词典一致等等,都可以作为反馈信息。同样,当我们用模型 G 把 Y 再变成英文句子 X'以后,也可以去衡量 X'是不是符合语法,是否顺畅、X'与 Y 的关系是否与英汉词典一致,以及 X'和 X 是否相似等等,都可以作为反馈信息。利用这些反馈信息,我们可以使用包括 Policy Gradient 在内的方法,来一轮一轮地更新我们的模型,直到最终得到两个满意的模型。

上面的这个过程可以无限循环下去,每次随机地抽选一个单语语句,做对偶学习,更新模型,然后再抽选下一个单语语句,进行对偶学习。那么这个过程会不会收敛呢?其答案是肯定的,以机器翻译为例,我们可以证明,只要机器翻译模型 F 和 G 的解部分都使用的是随机算法,比如 beam search,这个对偶学习过程就一定是收敛的,也就是说你最终会学到两个稳定的模型 F 和 G。

(责任编辑:本港台直播)
顶一下
(0)
0%
踩一下
(0)
0%
------分隔线----------------------------
栏目列表
推荐内容