本港台开奖现场直播 j2开奖直播报码现场
当前位置: 新闻频道 > IT新闻 >

wzatv:【组图】重磅论文 | 机器学习硬件概览:从算法到架构的挑战与机遇

时间:2016-12-24 17:54来源:668论坛 作者:118KJ 点击:
近日,MIT 发表一篇论文,从架构(GPU、CPU、FPGA)到算法概述机器学习硬件研究中的机遇与挑战。在人工智能硬件火热的今天,这是一篇不可错过的综述性文章。点击阅读原文可下载此

近日,MIT 发表一篇论文,从架构(GPU、CPU、FPGA)到算法概述机器学习硬件研究中的机遇与挑战。在人工智能硬件火热的今天,这是一篇不可错过的综述性文章。点击阅读原文可下载此论文

wzatv:【j2开奖】重磅论文 | 机器学习硬件概览:从算法到架构的挑战与机遇

摘要:机器学习在从传感器每天收集的大量数据中提取有用信息上发挥着非常重要的作用。在一些应用上,目的是为了分析并理解数据,从而辨清发展趋势(例如,监控、便携式/穿戴式电子设备)。在其他应用中,分析数据的目的是为了能够基于数据快速作出应对(例如,机器人/无人机、自动驾驶汽车、物联网)。对这些应用而言,出于对隐私、安全的考虑,再加上通信带宽的限制,在传感器附近的本地嵌入式处理要比上传到云更好。然而,在传感器端的处理有能耗与成本的限制,还有生产能力与准确率的要求。此外,也需要适应性,以便于传感器适应于不同的应用或环境(例如,在分类器上升级权重与模型)。在许多应用中,机器学习总是涉及到将输入数据转换到更高维度的空间,这伴随着可编程权重、增加数据传输以及最终的能量消耗方面的问题。在此论文中,我们将探讨如何在各种级别的硬件设计上解决这些问题:架构、硬件友好的算法、混合信号线路和高级技术(包括内存与传感器)。

一、 导语

现在是大数据时代。过去两年创造的数据要多于人类历史上所创造的所有数据。这主要是由于传感器(2013 年平均为 100 亿个,预期到 2020 年达到 1 万亿个)和连接设备(2016 年为 64 亿个,预期在 2020 年达到 208 亿个)的使用。这些传感器和设备每年生成数百泽字节(zatabyte)的数据,每秒生成拍字节(petabyte)的数据。

我们需要机器学习从这些数据中提取有用的、可理想地实施的信息。分析数据所需的大量数据分析经常是在云中做的。然而,在数据生成量与生成速度如此大的情况下,再加上通信的高能耗和宽带的限制,在传感器附近本地完成分析的需求越来越大,而非将原始数据发送到云中。在这些边缘地带嵌入机器学习也解决了对隐私、潜在安全性的担忧。

二、应用

从多媒体到医疗领域(medical space),许多应用都能从嵌入机器学习中受益。我们会提供几个研究领域的样本;不过,这篇论文主要关注的是计算机视觉,特别是图像分类,atv,作为推进案例。

  

wzatv:【j2开奖】重磅论文 | 机器学习硬件概览:从算法到架构的挑战与机遇

图 1:图像分类

A.计算机视觉

视频可能是最大的大数据。约占今天互联网流量的 70%。比如,全世界每天收集起来、需要审查的视频达 8 亿小时。在许多应用(比如,测量商店、交通模式下的等待时间)中,使用计算机视觉从图像传感器上(而不是云端)的视频中提取有意义的信息是极好的,能减少通信成本。就其他一些应用(比如自动驾驶车辆、无人机导航和机器人技术)来说,会需要本地化处理,因为依赖云端会有很大安全风险,还会有延迟的问题。不过,视频包括大量数据,处理起来,计算会很复杂,因此,分析视频的低成本硬件就成了让这些应用得以实现的关键。

在计算机视觉方面,有许多不同的人工智能任务。本文聚焦图像分类(如表一所示),有图像,任务就是判定图像目标类别。

B. 语音识别

语音识别显著改善了人类与设备的互动,比如智能手机。尽管目前绝大多数应用程序,比如苹果 Siri 和亚马逊的 Alexa 语音服务的处理位于云端,但是,在设备上面执行识别任务更理想,因为可以减少延迟和对连接的依赖,并且能增强隐私。语音识别是实现机器翻译、自然语言处理等很多其他人工智能任务的第一步。人们在研究用于语音识别的低功率硬件。

C. 医学

临床医学非常看重对病人的监测,收集长期数据帮助侦测/诊断各种疾病或者监督治疗。比如,持续的 ECG 或 EEG 信号监测将有助于识别心血管疾病,检测癫痫患者的发作。在许多情况下,这些设备要么是穿戴式的,要么是可移植的,因此,能耗必须维持在最低。所以,需要探索使用嵌入机器学习提取有意义的生理信号进行本地化处理的办法。

三、机器学习基础

(责任编辑:本港台直播)
顶一下
(0)
0%
踩一下
(0)
0%
------分隔线----------------------------
栏目列表
推荐内容