本港台开奖现场直播 j2开奖直播报码现场
当前位置: 新闻频道 > IT新闻 >

【图】盘点 | 2016年人工智能十大失败:从种族主义到致命车祸(2)

时间:2016-12-05 19:20来源:118图库 作者:本港台直播 点击:
7 月份,Pokmon Go 发布之后,多个用户注意到极少的 Pokmon 位于黑人社区。据 Mint 的首席数据官 Anu Tewary 说,这是因为算法的发明者没有提供多样的训练集,

  7 月份,Pokémon Go 发布之后,多个用户注意到极少的 Pokémon 位于黑人社区。据 Mint 的首席数据官 Anu Tewary 说,这是因为算法的发明者没有提供多样的训练集,在黑人社区上没有花费时间。

8. 谷歌人工智能 AlphaGo,败给了李世乭一局

在 3 月份的围棋大赛中,谷歌的人工智能系统 AlphaGo 4 比 1 击败了韩国李世乭。失败的一局表明人工智能算法如今还不完美。

新南威尔斯大学的人工智能教授 Toby Walsh 说「看起来,李世乭发现了蒙特卡洛树搜索中的一个弱点。」虽然被视为人工智能的一次失败,但 Yampolskiy 说此次失败「可认为在正常操作规范之内。」

9. 中国的面部识别学习预测罪犯,有偏见

上海交通大学的两个研究人员发表了一篇名为「Automated Inference on Criminality using Face Images」的论文。据 Mirror 报道,他们「将 1856 张面部图片(一半是罪犯)馈送进电脑并进行分析」。在此研究中,研究人员总结说「有一些可识别的结构特征来预测犯罪,比如唇曲率(lip curvature)、眼内角距(eye inner corner distance),以及所谓的口鼻角度(nose-mouth angle)。」领域内的许多人质疑这些结果和道德问题。

10. 保险公司使用 Facebook 数据观察出现问题的概率,有偏见

今年,英格兰最大的汽车保险商 Admiral Insurance 打算使用 Facebook 用户的推文数据观察社交网站与好司机之间的联系。

虽然这不是一次直接的失败,确是对人工智能的滥用。Walsh 说「Facebook 在数据限制上做的很好」。这一被称为「first car quote」的项目未能落地,因为 Facebook 限制该公司获取数据,援引条款称国营企业不能「使用来自 Facebook 的数据做关于资质的决策,包括支持或反对一项应用,以及贷款利率应该提多少等。」

在以上案例的证明下,人工智能系统极其倾向于有偏见。在多样的数据集上训练机器学习算法,atv,从而避免偏见变得极其重要。随着人工智能能力的增加,确保研究的适当检测、数据多样性和道德标准也更为重要。

  原文链接:

©本文为机器之心编译文章,转载请联系本公众号获得授权

  ?------------------------------------------------

加入机器之心(全职记者/实习生):[email protected]

投稿或寻求报道:[email protected]

广告&商务合作:[email protected]

(责任编辑:本港台直播)
顶一下
(0)
0%
踩一下
(0)
0%
------分隔线----------------------------
栏目列表
推荐内容