“在和医生合作的过程中,我们发现医生看病的过程跟机器学习也十分相似。”闫峻博士说。患者介绍病情即提供了机器学习算法的特征维度,接下来,医生根据患者的病情提供治疗方案,即进行预测,这很像训练机器学习的一个算法模型。但最重要的是,医生还需要了解这个治疗方案是否合适、患者有无并发症等问题,如果没有这一反馈,就无法得知医生的预测结果是否成功、没有机器学习需要的重要的数据标注,也就很难用此数据提高整体医疗水平。 “这其实就是一个患者随访的过程。”闫峻说道。 闫峻在这次与医院的合作过程中认识了不少医生朋友。他了解到,每位医生每年的患者量非常巨大,对每一位患者都进行长期跟踪随访几乎是不可能的,“有的医生平均一年可能做上千台手术”。从学术科研的角度来看,真实有效随访的医疗大数据量很少,影响医疗水平的提高;而从患者的角度来说,由于离开医院后很难得到后续的提醒和关怀,也影响整体的就医感受。 微软亚洲研究院的研究员们也很快为这个问题提供了解决方案。研究员为医生们在各自的人工智能医生助手提供了一个后台,医生能在机器人的后台上设置一些规则、随访问题,例如治疗效果如何、是否有并发症等。在患者给出回复后,计算机便会通过自然语言处理技术来理解患者的回答,并将其变成知识库中的一部分,用来做数据分析。当患者有不理想的治疗结果反馈时,机器人也会及时地将这一信息通知医生。这样医生就能第一时间联系病人进行进一步的治疗,杜绝潜在的风险。特别是对于外地来省会医院等治疗的病人,由于路途遥远,这种自动化定期随访将方便他们与医生构建长期联系的机制。 “这个医疗项目本质上是提升医生和患者之间的沟通效率,让两者能够相互信赖。”闫峻博士总结道。通过人工智能医生助手,患者在就诊前就可以事先和机器人做一些简单的沟通,大概了解可能的治疗方案,什么时间去医院比较合适,在本地治疗还是需要去更高级的医院。患者能够通过这种前期沟通的方式一定程度上消除这种信息的不对等,患者在治疗过程中有任何疑惑也能得到及时的回答。在治疗之后,患者还能得到医院的长期关怀,研究员们还为这个机器人加入了一些很人性化的功能,例如提醒病人什么时候需要吃药,吃药的剂量;或者在患者生日和特殊节日时,发送祝福,祝愿患者身体健康等。这些对于计算机而言十分简单的任务,对于工作繁重的医生来说却几乎不可能面面俱到的完成。而从医院的角度来看,也可以收集真实的医疗大数据,帮助医院提升整体的医疗水平和科研水平。
最大的困难是没有困难 困难重重。这个词可能是很多人第一次接触到这个项目时的想法。但出人意料的是,闫峻博士却不觉得这个项目有什么“最大的困难”。 对于学术界的人来说,如果想做这样一个项目,最大的困难可能来源于对资金的支持。而对于工业界的人来说,你很难说服自己的老板去做一个和整个公司的商业目标不是完全契合的项目。但这两种困难,对于微软亚洲研究院这样一个十几年如一日深耕计算机基础科研的机构来说,是几乎不存在的。 “我觉得在这里做研究最好的事情是我们没有太多的后顾之忧,也没有什么资金的压力。你只需要证明你做的这件事情本身是有价值的,那就没有人会阻拦你。如果说困难,困难都是研究上面的具体问题,例如数据量太大导致训练算法的过程耗时太久等等。但这种问题是每一个做研究的人都会碰到的。” 类似于人工智能医生助手这类的研究项目在微软还有很多。帮助视觉障碍患者重新“看见”周围世界的Seeing AI项目,帮助渐冻症患者用眼睛驾驶轮椅的Eye Gaze Wheelchair项目,用机器学习技术寻找艾滋病毒的核心蛋白计划,利用计算机视觉和机器学习识别癌症病理切片……正是因为有这么多心怀善意与正能量的酷炫极客们正在用技术来改善身边每一个人的计算体验,这个世界才会越来越美好。 目前,这个人工智能医疗助手项目还处于试验的早期阶段,相关的技术还在根据试验的结果不断完善。至于下一步的计划,闫峻博士表示:“希望能将这项技术真正应用到临床上,让每一个医疗环节都能多一份信赖。” (责任编辑:本港台直播) |