本港台开奖现场直播 j2开奖直播报码现场
当前位置: 新闻频道 > IT新闻 >

码报:深度 | 伯克利教授Stuart Russell:人工智能基础概念与34个误区

时间:2016-11-21 23:04来源:天下彩论坛 作者:本港台直播 点击:
Russell 是加州大学伯克利分校人工智能系统中心创始人兼计算机科学专业教授,同时还是人工智能领域里「标准教科书」《人工智能:一种现代方法》作者(谷歌研究主管 Peter Norvig 也

Russell 是加州大学伯克利分校人工智能系统中心创始人兼计算机科学专业教授,同时还是人工智能领域里「标准教科书」《人工智能:一种现代方法》作者(谷歌研究主管 Peter Norvig 也是该书作者)。在这篇文章中,他以 Q&A 的方式讲解了人工智能的未来以及常见的误解。

1. 什么是人工智能?

是对让计算机展现出智慧的方法的研究。计算机在获得正确方向后可以高效工作,在这里,正确的方向意味着最有可能实现目标的方向,用术语来说就是最大化效果预期。人工智能需要处理的任务包括学习、推理、规划、感知、语言识别和机器人控制等。

常见误解

「它是一个特定技术」。例如在二十世纪八十年代到九十年代,人们经常会看到新闻报道中人工智能与基于规则的专家系统被混为一谈。现在,人工智能经常会与多层卷积神经网络混淆。这有点像把物理和蒸汽机的概念搞混了。人工智能探究如何在机器中创造智能意识,它不是在研究中产生的任何一个特定的技术。

「这是一个特定类别的技术方法」。例如,经常有人用符号化或逻辑化的方法将人工智能与「其他方法」相互比较,如神经网络和遗传编程。人工智能不是一种方法,它是一个课题。所有这些方法都是在对人工智能进行研究的产物。

「这是一小群研究者的方向」。这个误解与前几个错误有关。一些作者使用「计算智能」指代几个特定的研究者群体,如研究神经网络,模糊逻辑和遗传算法的研究者。这是非常片面的,因为这种分类让人工智能的研究陷入孤立的境地,让研究成果不能得到广泛的讨论。

「人工智能只是算法」。严格说来不算是误解,人工智能的确包含算法(也可粗略定义为程序),它也包含计算机中其他的应用。当然,人工智能系统需要处理的任务相比传统算法任务(比如排序、算平方根)复杂得多。

2. 人工智能将如何造福人类?

文明的一切都是人类智慧的产物。在未来,人工智能会将会扩展人类的智力,这就像起重机让我们能够举起几百吨的重物,飞机让我们很快飞到地球的另一端,电话让我们在任何角落实时交流一样。如果人工智能被适当地设计,它可以创造更多价值。

常见误解

「人工智能没有人性」。在很多反乌托邦幻想中,人工智能会被用来控制大部分人类,无论是通过监视,机器人执法,法律判决甚至控制经济。这都是未来可能出现的情况,但首先它不会被大多数人接受。人们往往忽视人工智能可以让人类接触更多的知识,消除人与人之间的语言隔阂,解决无意义和重复的繁重任务。

「人工智能将造成不平等」。毫无疑问,自动化程度的提升将使财富集中到越来越少的人手里。但是现在,如何使用人工智能的选择权在我们手里。例如,直播,人工智能可以促进协作,让生产者与客户有更多交流,它可以让个人和小组织在全球化的经济环境下独立运作,摆脱对于特定大公司订单的依赖。

3. 什么是机器学习?

它是人工智能的一个分支,探索如何让计算机通过经验学习提高性能。

常见误解

「机器学习是一个新的领域,它已经代替了人工智能的地位」。这种误解是最近机器学习热潮产生的副作用,大量学生在之前没有接触过人工智能的情况下学习了机器学习课程。机器学习一直是人工智能的核心话题:阿兰·图灵在二十世纪五十年代的论文中已经认为学习是通向人工智能最可行的途径。这一观点似乎是正确的,人工智能最突出的早期成果,Arthur Samuel 的跳棋程序就是使用机器学习构建的。

「机器不能学习,它们只能做程序员告诉它的事情」。这显然是错的,程序员能够告诉机器如何学习。Samuel 是一个优秀的跳棋玩家,但他的程序很快就通过学习超过了他。近年来,机器学习的很多应用都需要大量数据来进行训练。

4. 什么是神经网络?

神经网络是受生物神经元启发构建的计算系统。神经网络由许多独立的单元组成,每个单元接收来自上一层单元的输入,并将输出发送到下个单元(「单元」不一定是单独的物理存在;它们可以被认为是计算机程序的不同组成部分)。单元的输出通常通过取输入的加权和并通过某种简单的非线性转型,神经网络的关键特性是基于经验修改与单元之间的链接比较相关权重。

常见误解

(责任编辑:本港台直播)

顶一下
(0)
0%
踩一下
(0)
0%
------分隔线----------------------------
栏目列表
推荐内容